1 |
Zhou L, Zhang W, Sun Y, et al. Protein neddylation and its alterations in human cancers for targeted therapy[J]. Cell Signal, 2018, 44:92-102.
|
2 |
Ni S, Chen X, Yu Q, et al. Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth[J]. Eur J Med Chem, 2020,185:111848.
|
3 |
Deberardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation[J]. Cell Metab, 2008, 7(1):11-20.
|
4 |
Claus S. NEDD8-its role in the regulation of Cullin-RING ligases[J]. Curr Opin Plant Biol, 2018, 45:112-119.
|
5 |
Ribet D, Cossart P. Ubiquitin, SUMO, and NEDD8: key targets of bacterial pathogens[J]. Trends Cell Biol, 2018, 28(11):926-940.
|
6 |
Zhang ZX, Heng YQ, Cheng W, et al. Reactive oxygen species (ROS)-response nanomedicine through knocking down a novel therapeutic target NEDD8-conjugating enzyme UBC12 (UBE2M) in the treatment of liver cancer[J]. Mater Design, 2021, 204:109648
|
7 |
Chew EH, Hagen T. Substrate-mediated regulation of cullin neddylation[J]. J Biol Chem, 2007, 282(23):17032-17040.
|
8 |
Zhang XY, Zhang YL, Qiu GH, et al. Hepatic neddylation targets and stabilizes electron transfer flavoproteins to facilitate fatty acid β-oxidation[J]. Proc Natl Acad Sci USA, 2020, 117(5): 2473-2483.
|
9 |
Kostrhon S, Prabu JR, Baek K, et al. CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation[J]. Nat Chem Biol, 2021, 17(10):1075-1083.
|
10 |
Milhollen MA, Thomas MP, Narayanan U, et al. Treatment-emergent mutations in NAEβ confer resistance to the NEDD8-Activating enzyme inhibitor MLN4924[J]. Cancer Cell, 2012, 21(3): 388-401.
|
11 |
Ferdosi SR, Taylor B, Lee M, et al. RETRACTED: PTEN loss drives resistance to the neddylation inhibitor MLN4924 in glioblastoma and can be overcome with TOP2A inhibitors[J]. Neuro Oncol, 2022, 24(11):1857-1868.
|
12 |
Kathawala RJ, Espitia CM, Jones TM, et al. ABCG2 overexpression contributes to pevonedistat resistance[J]. Cancers, 2020, 12(2):429.
|
13 |
Li Y, Plesescu M, Prakash SR. Synthesis of two isotopically labeled versions of NEDD8-activating enzyme (NAE) inhibitor[J]. Tetrahedron Lett, 2011, 52(15):1807-1810.
|
14 |
秦小琰,刘彦尧, 康权. 肝癌肝移植术后复发转移的防治策略和靶向免疫治疗[J]. 器官移植, 2022, 13(2): 271-276.
|
15 |
Jiang YY, Cheng W, Li LH, et al. Effective targeting of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma treatment[J]. Cell Biol Toxicol, 202, 36(4):349-364.
|
16 |
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters:multifaceted players with incipient potentialities in cancer[J]. Semin Cancer Biol, 2020, 60:57-71.
|
17 |
Smith B, Land H. Anticancer activity of the cholesterol exporter ABCA1 gene[J]. Cell Rep Med, 2012, 2(3):580-590.
|
18 |
Liu X, Li Q, Zhou J, et al. ATP-binding cassette transporter A7 accelerates epithelial-to-mesenchymal transition in ovarian cancer cells by upregulating the transforming growth factor-β signaling pathway[J]. Oncol Lett, 2018, 16(5):5868-5874.
|
19 |
Erdogan H. One small step for cytochrome P450 in its catalytic cycle, one giant leap for enzymology[J]. J Porphyr Phthalocyanines, 2019, 23(4-5):358-366.
|
20 |
Jennifer, Fuentealba M, Cabrera R, et al. Modeling the interfacial interactions between CrtS and CrtR from Xanthophyllomyces dendrorhous, a P450 system involved in astaxanthin production[J]. J Agric Food Chem, 2012, 60(35):8640-8647.
|
21 |
Iwama R, Kobayashi S, Ishimaru C, et al. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica[J]. Fungal Genet Biol, 2016, 91:43-54.
|
22 |
Kelly SL, Kelly DE. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1612):20120476.
|
23 |
Stipp MC, Acco A. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review[J]. Cancer Chemother Pharmacol, 2021, 87(3):295-309.
|
24 |
董年,宋晨剑,裘丹萍,等.基质蛋白CCN1与肺部疾病的研究进展[J].中国病理生理杂志,2018,34(1):188-192.
|
25 |
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxikol, 2015, 89(6):867-882.
|
26 |
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, et al. Extracellular-signal regulated kinase: a central molecule driving epithelial-mesenchymal transition in cancer[J]. Int J Mol Sci, 2019, 20(12):2885.
|
27 |
Kiniwa Y, Okuyama R. Recent advances in molecular targeted therapy for unresectable and metastatic BRAF-mutated melanoma[J]. Jpn J Clin Oncol, 2021, 51(3):315-320.
|
28 |
Djanani A, Eller S, Fner D, et al. The role of BRAF in metastatic colorectal carcinoma-past, present, and future[J]. Int J Mol Sci, 2020, 21(23):1-21.
|
29 |
Yu M, Grady WM. Therapeutic targeting of the phosphatidyl-inositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer[J]. Therap Adv Gastroenterol, 2012, 5(5):319-337.
|
30 |
Revathidevi S, Munirajan AK. Akt in cancer: mediator and more[J]. Semin Cancer Biol, 2019, 59:80-91.
|
31 |
Nie Y, Sun L, Wu Y, et al. AKT2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation[J]. J Immunol, 2017, 198(11):4470-4480.
|
32 |
Mercer PF, Woodcock HV, Eley JD, et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF[J]. Thorax, 2016, 71(8):701-711.
|
33 |
Cheadle C, Nesterova M, Watkins T, et al. Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells[J]. BMC Med Genomics, 2008, 1:43.
|
34 |
Casarini L, Santi D, Brigante G, et al. Two hormones for one receptor: evolution, biochemistry, actions, and pathophysiology of LH and hCG[J]. Endocr Rev, 2018, 39(5):549-592.
|