切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 215 -223. doi: 10.3877/cma.j.issn.2095-1221.2022.04.004

论著

仿生聚己内酯支架用于乳房组织工程的可行性研究
张郭1, 慈海1, 周牧冉1, 孙家明1, 郭亮1,()   
  1. 1. 430022 武汉,华中科技大学同济医学院附属协和医院整形外科
  • 收稿日期:2021-05-19 出版日期:2022-08-01
  • 通信作者: 郭亮
  • 基金资助:
    国家自然科学基金(81401607,82020108020,8187080767)

Biomimetic polycaprolactone scaffolds for breast tissue engineering in rabbits

Guo Zhang1, hai Ci1, Muran Zhou1, Jiaming Sun1, Liang Guo1,()   

  1. 1. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
  • Received:2021-05-19 Published:2022-08-01
  • Corresponding author: Liang Guo
引用本文:

张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.

Guo Zhang, hai Ci, Muran Zhou, Jiaming Sun, Liang Guo. Biomimetic polycaprolactone scaffolds for breast tissue engineering in rabbits[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(04): 215-223.

目的

探讨聚己内酯(PCL)乳房形态支架用于组织工程乳房的构建的可能性。

方法

通过熔融沉积3D打印制备形态仿生的PCL支架,测量其机械性能,并使用新西兰大白兔动物模型,皮下植入该PCL支架12周和18周后,利用核磁共振成像(MRI)观察支架内部新生组织分布情况,在组织学(HE、Masson及EVG染色)上评估支架内部的脂肪、纤维及血管的分布情况,并进一步使用qRT-PCR检测了12周时PCL支架内部组织的成脂相关基因(PPAR-γ、C/EBP-β、AP-2)、炎症相关基因TNF-α及巨噬细胞标记物F4-80的表达情况,同时使用凝胶渗透色谱法分析了PCL植入体内后平均分子量的变化。2组间均数比较采用独立样本t检验,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,配对设计的均数比较采用配对t检验。

结果

制备的PCL支架孔隙率为(85.30±1.12)%,压缩模量为(8.18±1.39)MPa,植入新西兰大白兔动物模型皮下12周后,MRI影像学显示脂肪组织已由支架周围向内部侵入,HE、Masson及EVG染色同样在该支架边缘观察到部分新生脂肪组织及血管,而支架内部则以疏松排列的纤维组织为主;与原生脂肪比较,12周PCL支架内组织的基因表达分析成脂相关基因C/EBPβ表达水平(2.32±0.28比1.00±0.02)升高,而巨噬细胞标记物F4/80表达(0.80±0.12比1.00±0.03)降低(P均< 0.01);18周后,HE染色证实支架内部已充满脂肪组织。基因表达证实,与原生脂肪比较,支架内部组织C/EBP-β (3.30±0.63比1.00±0.02),PPAR-γ (1.81±0.71比0.99±0.02)及AP-2表达水平(1.38±0.16比1.01±0.01)升高(P均< 0.01);而TNF-α(0.50±0.15比1.00±0.01)及F4/80表达水平(0.52±0.09比1.00±0.03)均降低(P均< 0.001)。而植入体内PCL支架的分子量(Mn)在18周内变化不大[(65.04±2.24)kDa比(64.20±4.09) kDa]。

结论

PCL支架具有较好的生物相容性,可用于组织工程乳房的构建,该新西兰大白兔动物模型的建立有利于乳房组织工程的进一步临床转化。

Objective

To explore the potential of polycaprolactone (PCL) breast-shaped scaffolds for the construction of tissue-engineered breasts and to investigate its biocompatibility and potential adipogenic ability via histological analysis and real-time quantitative polymerase chain reaction (qRT-PCR) .

Methods

The biomimetic PCL scaffold was prepared by fused deposition modeling and its mechanical properties were measured. PCL scaffolds were implanted subcutaneously using New Zealand rabbits. After 12 and 18 weeks, the distribution of newly-formed tissue inside the scaffold was observed using magnetic resonance imaging (MRI) and the distribution of fat, fibers and blood vessels inside the scaffold was assessed via histology (HE, Masson and EVG staining) . The expression of adipogenic genes (PPAR-γ, C/EBP-β, AP-2) , inflammation-related gene TNF-α and macrophage marker F4-80 in the tissues inside the PCL scaffold was further examined by qRT-PCR at 12 and 18 weeks. Changes of the mean molecular weight of PCL scaffold after implantation were also analyzed by gel permeation chromatography. Means between the 2 groups were compared using the independent samples t-test, one-way ANOVA for comparisons between multiple groups, LSD-test for two-way comparisons between groups, and paired t-test for comparison of means in a paired design.

Results

PCL scaffold had a porosity of (85.30±1.12) % and a compression modulus of (8.18±1.39) MPa. MRI imaging showed that adipose tissue had invaded into the scaffold after 12 weeks. Compared with native adipose tissue, gene expression analysis of the tissue inside PCL scaffolds at 12 weeks showed an increase in the expression of the adipogenic gene C/EBP β (2.32±0.28 vs 1.00±0.02) and a decrease in the expression of the macrophage marker F4/80 (0.80±0.12 vs 1.00±0.03) (both P < 0.01) . After 18 weeks, HE staining confirmed that the scaffold was filled with adipose tissue. Gene expression confirmed increased expression of C/EBP-β (3.30±0.63 vs 1.00±0.02) , PPAR-γ (1.81±0.71 vs 0.99±0.02) and AP-2 expression levels (1.38±0.16 vs 1.01±0.01) compared to native adipose (all P < 0.01) ; whereas expression of TNF-α (0.50±0.15 vs 1.00±0.01) and F4/80 expression levels (0.52±0.09 vs 1.00±0.03) were reduced (both P < 0.001) . The molecular weight (Mn) of implanted PCL scaffolds in vivo did not change significantly over 18 weeks [ (65.04±2.24) kDa compared to (64.20±4.09) kDa].

Conclusion

These results showed scaffolds printed with PCL were capable and superior for breast tissue engineering because of their optimal mechanical property as well as biocompatibility. The establishment of the rabbit model was conducive to the further clinical transformation of breast tissue engineering.

表1 3D打印的PCL线材参数
表2 引物序列信息
图1 PCL支架相关表征注:a图为正常视野下PCL支架的大体照片;b图为体视显微镜照片显示PCL支架内部支柱、孔和孔的相互连接;c图为压缩模量定量对比(n = 3),与TPU比较,aP < 0.001;与PCL比较,bP < 0.001;与PP比较,cP < 0.001
图2 植入PCL支架后手术示意图注:a图白色圆圈为PCL支架植入部位;b ~ c图为手术流程图,示PCL支架植入皮下后缝合
图3 植入支架12周后MRI影像学结果注:a ~ c图为在不同的代表性界面MRI图像均观察到高信号的脂肪组织(右上插图示剖面);d图为不同代表性截面脂肪组织面积占比的定量分析(n = 4)
图4 植入12和18周后PCL支架组织学结果注:a ~ b图为12周即刻取材PCL支架标本的俯视图,c图为侧视图,d图为纵剖图;e ~ f图为18周即刻取材PCL支架标本的俯视图,g图为侧视图,h图为纵剖图
图5 植入PCL支架12周后HE染色结果注:a ~ f图为PCL支架的HE、Masson及EVG染色图像及局部放大图像(×40),虚线示可见支架外周有少量包膜形成,红色剪头为内部边缘充满新生脂肪组织及血管,#为支架与新生脂肪组织间有少量包膜形成
图6 植入PCL支架18周后HE染色结果注:a ~ c图可见支架外周有少量包膜形成,而内部高度血管化,充满大量规则圆形脂肪空泡,#为支架与新生脂肪组织间几乎无包膜形成
图7 不同时间点PCL支架内部组织基因表达情况注:与原生脂肪比较,aP < 0.01;与12周比较,bP < 0.05,ns为差异无统计学意义,n = 6
图8 正常视野及扫描电镜下观察PCL支架(×50,×2 000)注:a ~ c图为植入前PCL支架大体形态,电镜图可见其表面较为光滑;d ~ f图为植入12周后取出的PCL支架,大体形态未发生明显变化,但电镜图可见其出现凹陷;g ~ i图为植入18周后取出的PCL支架,大体形态仍未发生明显变化,但电镜图可见其表面出现裂痕和空洞
图9 PCL材料降解性评估注:a图为PCL的红外傅立叶光谱图;b ~ c图为PCL差示扫描量热分析曲线和结晶度变化曲线,aP < 0.05;d图为PCL分子量(Mn)变化曲线(n = 3),ns为差异无统计学意义
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
2
Cordeiro PG. Breast reconstruction after surgery for breast cancer[J]. N Engl J Med, 2008, 359(15):1590-1601.
3
Panchal H, Matros E. Current trends in postmastectomy breast reconstruction[J]. Plast Reconstr Surg, 2017, 140(5S Advances in Breast Reconstruction):7S-13S.
4
Simonacci F, Bertozzi N, Grieco M P, et al. Autologous fat transplantation for breast reconstruction: A literature review[J]. Ann Med Surg (Lond), 2016, 12:94-100.
5
张郭,周牧冉,陈佳龙, 等. 组织工程乳房的研究进展及临床展望[J]. 组织工程与重建外科杂志, 2020, 16(2):160-164.
6
Chhaya MP, Balmayor ER, Hutmacher DW, et al. Transformation of breast reconstruction via additive biomanufacturing[J]. Sci Rep, 2016, 6:28030.doi: 10.1038/srep28030.
7
Rehnke RD, Schusterman MA 2nd, Clarke JM, et al. Breast reconstruction using a three-dimensional absorbable mesh scaffold and autologous fat grafting: a composite strategy based on tissue-engineering principles[J]. Plast Reconstr Surg, 2020, 146(4):409e-413e.
8
Chhaya MP, Melchels FP, Holzapfel BM, et al. Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing[J]. Biomaterials, 2015, 52:551-560.
9
Sung HJ, Meredith C, Johnson C, et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis[J]. Biomaterials, 2004, 25(26):5735-5742.
10
Jafari M, Paknejad Z, Rad MR, et al. Polymeric scaffolds in tissue engineering: a literature review[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(2):431-459.
11
Teoh SH, Goh BT, Lim J. Three-dimensional printed polycaprolactone scaffolds for bone regeneration success and future perspective[J]. Tissue Eng Part A, 2019, 25(13-14):931-935.
12
Bartnikowski M, Dargaville TR, Ivanovski S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment[J]. Prog Polym Sci, 2019, 96:1-20.
13
Meng Z, He J, Cai Z, et al. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering[J]. Mater Des, 2020, 189:108508.
14
Baptista R, Guedes M. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118:111528.doi: 10.1016/j.msec.2020.111528.
15
Lam CX, Hutmacher DW, Schantz JT, et al. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo[J]. J Biomed Mater Res A, 2009, 90(3):906-919.
16
Xiao J, Gao Y. The manufacture of 3D printing of medical grade TPU[J]. Prog Addit Manuf, 2017, 2(3):117-123.
17
Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies[J]. Adv Mater, 2020, 32(1):1902026.doi: 10.1002/adma.201902026.
18
Cheng M, Janzekovic J, Mohseni M, et al. A preclinical animal model for the study of scaffold-guided breast tissue engineering[J]. Tissue Eng Part C Methods, 2021, 27(6):366-377.
19
Zhang G, Ci H, Ma C, et al. Additive manufactured macroporous chambers facilitate large volume soft tissue regeneration from adipose-derived extracellular matrix[J]. Acta Biomater, 2022, 148:90-105.
20
Visscher L E, Cheng M, Chhaya M, et al. Breast augmentation and reconstruction from a regenerative medicine point of view: state of the art and future perspectives[J]. Tissue Eng Part B Rev, 2017, 23(3):281-293.
21
Higuchi A, Ling QD, Chang Y, et al. Physical cues of biomaterials guide stem cell differentiation Fate[J]. Chem Rev, 2013, 113(5):3297-3328.
22
Luo T, Mohan K, Iglesias PA, et al. Molecular mechanisms of cellular mechanosensing[J]. Nat Mater, 2013, 12(11):1064-1071.
23
Egan P, Sinko R, Leduc P R, et al. The role of mechanics in biological and bio-inspired systems[J]. Nat Commun, 2015, 6:7418.doi: 10.1038/ncomms8418.
24
Devolder R, Kong HJ. Hydrogels for in vivo-like three-dimensional cellular studies[J]. Wiley Interdiscip Rev Syst Biol Med, 2012, 4(4): 351-365.
25
Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering[J]. Chem Rev, 2017, 117(5):4376-4421.
26
Weisgrab G, Guillaume O, Guo Z, et al. 3D Printing of large-scale and highly porous biodegradable tissue engineering scaffolds from poly(trimethylene-carbonate) using two-photon-polymerization[J]. Biofabrication, 2020, 12(4):045036.doi: 10.1088/1758-5090/abb539.
27
Mondschein RJ, Kanitkar A, Williams CB, et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds[J]. Biomaterials, 2017, 140:170-188.
28
Xie C, Gao Q, Wang P, et al. Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers[J]. Mater Des, 2019, 181:108092.
29
Zhou M, Hou J, Zhang G, et al. Tuning the mechanics of 3D-printed scaffolds by crystal lattice-like structural design for breast tissue engineering[J]. Biofabrication, 2019, 12(1):015023.doi: 10.1088/1758-5090/ab52ea.
30
Hu ES, Pusic AL, Waljee JF, et al. Patient-reported aesthetic satisfaction with breast reconstruction during the long-term survivorship period[J]. Plast Reconstr Surg, 2009, 124(1):1-8.
[1] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[2] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[3] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[4] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[5] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[6] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[7] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[8] 陈世远, 余朝文, 高涌, 王孝高, 张克霏. 3D打印、体外开窗、CTA与DSA融合在胸腹主动脉瘤腔内治疗中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(02): 128-128.
[9] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[10] 王祎, 王峻峰, 杨超, 晋云, 胡苹苹. 数字医学技术在肝脏分段及解剖性肝切除中的应用现状[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 16-21.
[11] 刘文瑛, 欧阳再兴, 朱剑华, 吴黎明, 谭勇, 宋灏, 朱玉珍, 黄从云. 多模态影像技术在精准肝癌肝切除中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 574-579.
[12] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[13] 吕东, 朱盛, 胡秋平, 邹松, 黄文强, 唐全进, 黄海. 基于增强CT与增强MRI融合的3D打印导板辅助脑肿瘤穿刺活检一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 251-254.
[14] 高尔涵, 张硕, 齐岩松, 王一帆. 3D打印个别托盘在全口义齿修复中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(03): 255-259.
[15] 陈雄焕, 胡培阳. 3D打印模型在骨盆骨折外固定训练中的效果研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 163-165.
阅读次数
全文


摘要