切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (05) : 298 -304. doi: 10.3877/cma.j.issn.2095-1221.2021.05.007

论著

丙泊酚对肠缺血再灌注损伤大鼠心肌损伤的保护作用及相关信号通路研究
雷剑1,(), 张昌盛2, 吴宝1   
  1. 1. 102618 北京,中国中医科学院广安门医院(南区)麻醉科
    2. 100853 北京,中国人民解放军总医院麻醉科
  • 收稿日期:2021-05-24 出版日期:2021-10-01
  • 通信作者: 雷剑
  • 基金资助:
    国家自然科学委员会青年科学基金(81901096)

Protective effect of propofol on myocardial injury and related signal pathways in rats with intestinal ischemia-reperfusion injury

Jian Lei1,(), Changsheng Zhang2, Bao Wu1   

  1. 1. Department of Anesthesiology, Guang' anmen Hospital (Southern District) , Chinese Academy of Chinese Medicine Sciences, Beijing 102618, China
    2. Department of Anesthesiology, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2021-05-24 Published:2021-10-01
  • Corresponding author: Jian Lei
引用本文:

雷剑, 张昌盛, 吴宝. 丙泊酚对肠缺血再灌注损伤大鼠心肌损伤的保护作用及相关信号通路研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 298-304.

Jian Lei, Changsheng Zhang, Bao Wu. Protective effect of propofol on myocardial injury and related signal pathways in rats with intestinal ischemia-reperfusion injury[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(05): 298-304.

目的

探究丙泊酚对肠缺血再灌注损伤大鼠心肌损伤的保护及其作用机制。

方法

构建肠缺血再灌注损伤大鼠模型,使用随机数字表法分为模型组、假手术组(假手术组和模型组腹腔注射脂肪乳)、低、中、高剂量丙泊酚组(在手术前30 min分别腹腔注射5、10、20 mg/ kg的丙泊酚)。再灌注2 h后,苏木素-伊红(HE)染色观察大鼠小肠组织和心肌组织病理学改变;TUNEL法检测大鼠心肌细胞凋亡情况;酶联免疫吸附法(ELISA)检测大鼠血清丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)以及白细胞介素1β(IL- 1β)、IL-6、肿瘤坏死因子α (TNF-α)的水平;蛋白免疫印迹法(Western blot)检测大鼠心肌组织沉默信息调节因子2相关酶1 (Sirt1)、乙酰化叉头状转录因子1 (Ac-Foxo1)蛋白的表达。多组间比较采用单因素方差分析,进一步两组间比较采用SNK-q检验。

结果

与假手术组相比,模型组小肠组织出现严重水肿且部分坏死,小肠黏膜结构受损,绒毛明显脱落,心肌细胞肿胀,间质出现大量炎性细胞浸润,心肌细胞凋亡率[(4.05±0.37)﹪比(34.24±4.28)﹪]、Ac- Foxo1表达量(0.80±0.14比2.21±0.25)、MDA含量[(4.09±0.81) nmol/ mg比(12.64±2.10) nmol/ mg]、TNF-α [(19.26±3.48)pg/mg比(85.37±10.41)pg/mg]、IL- 1β[(9.53±1.14) pg/mg比(57.82±7.36)pg/ mg]和IL- 6[(8.49±2.03) pg/ mg比(50.76±6.28) pg/ mg]水平均升高,Sirt1表达量(1.15±0.17比0.42±0.05)、GSH-Px [(33.65±5.64) U/ mg比(8.42±1.87) U/ mg]和SOD活性[(45.96±7.83) U/ mg比(13.65±4.34) U/ mg]均降低,差异有统计学意义(P均< 0.05);与模型组相比,中、高剂量丙泊酚组大鼠心肌细胞凋亡率[(34.24±4.28)﹪比(19.44±3.53)﹪,(13.61±2.29)﹪]、Ac- Foxo1表达量(2.21±0.25比1.50±0.19,1.16±0.17)、MDA含量[(12.64±2.10)nmol/ mg比(9.24±1.02) nmol/mg,(7.16± 0.87) nmol/mg]以及TNF-α[(85.37±10.41)pg/mg比(58.82±5.43) pg/mg,(42.15±7.38)pg/mg]、IL-1β[(57.82±7.36) pg/mg比(36.58±6.12)pg/mg,(26.75±5.34)pg/mg]、IL-6 [(50.76±6.28) pg/ mg比(35.26±4.99)pg/mg,(23.51±4.32)pg/mg]水平均降低,Sirt1表达量(0.42±0.05比0.65±0.07,0.86±0.09)、GSH-Px [(8.42±1.87)U/mg比(20.45±2.86)U/mg,(26.26±3.03)U/mg]和SOD活性[(13.65±4.34)U/mg比(24.62±4.19) U/ mg,(32.95±4.13)U/mg]均升高,且呈一定的剂量依赖性,差异均有统计学意义(P均< 0.05)。

结论

丙泊酚可提高肠缺血再灌注损伤大鼠心肌细胞抗氧化能力,降低炎症反应,从而对心肌损伤起到保护作用,其作用机制可能与激活Sirt1/Foxo1通路有关。

Objective

To explore the protective effect of propofol on myocardial injury in rats with intestinal ischemia-reperfusion injury and mechanism thereof.

Methods

Rat models of intestinal ischemia-reperfusion injury were constructed and divided into model group, sham operation group (sham operation group and model group by intraperitoneal injection of fat emulsion) , low, medium and high dose propofol group (5, 10, and 20 mg/kg propofol were injected intraperitoneally 30 minutes before surgery) . After 2 hours of reperfusion, hematoxylin-eosin (HE) staining was used to observe the pathological changes of the small intestinal tissue and cardiac muscle tissue in the rats; TUNEL assay was used to detect rat cardiomyocyte apoptosis; enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum malondialdehyde (MDA) , glutathione peroxidase (GSH-Px) , superoxide dismutase (SOD) and interleukin 1β (IL-1β) , IL-6, and tumor necrosis factor α (TNF-α) in the rats; Western blot was used to detect the expressions of silent information regulation factor 2 related enzyme 1 (Sirt1) and acetylated forkhead transcription factor 1 (Ac- Foxo1) proteins in rat myocardial tissues. One-way analysis of variance was used for the comparison between multiple groups, and SNK-q test was used for further comparison between two groups.

Results

Compared with the sham operation group, the small intestinal tissue of the model group was severely edematous and partially necrotic, the structure of the small intestinal mucosa was damaged, the villi were obviously shedding, myocardial cells were swollen, and a large number of inflammatory cell infiltration appeared in the interstitium. The myocardial cells apoptosis rate [ (4.05±0.37) ﹪vs (34.24±4.28) ﹪], Ac-Foxo1 expression (0.80±0.14 vs 2.21±0.25) , MDA content [ (4.09±0.81) nmol/mg vs (12.64±2.10) nmol/ mg], and the levels of TNF-α [ (19.26±3.48) pg/ mg vs (85.37±10.41) pg/ mg], IL-1β [ (9.53±1.14) pg/ mg vs (57.82±7.36) pg/ mg], and IL-6 [ (8.49±2.03) pg/mg vs (50.76±6.28) pg/mg] were increased significantly (P < 0.05) ; Sirt1 expression (1.15±0.17 vs 0.42±0.05) , and the activity of GSH-Px[ (33.65±5.64) U/mg vs (8.42±1.87) U/ mg] and SOD [ (45.96±7.83) U/mg vs (13.65±4.34) U/ mg]were decreased, with the difference statistically significant (all P < 0.05) . Compared with the model group, the apoptotic rate of cardiomyocytes in the middle and high dose propofol group[ (34.24±4.28) ﹪ vs (19.44±3.53) ﹪, (13.61±2.29) ﹪], Ac- Foxo1 expression (2.21±0.25 vs 1.50±0.19, 1.16±0.17) , MDA content [ (12.64±2.10) nmol/ mg vs (9.24±1.02) nmol/mg, (7.16±0.87) nmol/ mg] and the levels of TNF-α [ (85.37± 10.41) pg/ mg vs (58.82±5.43) pg/ mg, (42.15±7.38) pg/ mg], IL-1β [ (57.82±7.36) pg/ mg vs 36.58±6.12) pg/ mg, (26.75±5.34) pg/ mg], and IL-6 [ (50.76±6.28) pg/ mg vs (35.26±4.99) pg/ mg, (23.51±4.32) pg/ mg] were reduced; Sirt1 expression (0.42±0.05 vs 0.65±0.07, 0.86±0.09) , and the activity of GSH-Px[ (8.42±1.87) U/ mg vs (20.45±2.86) U/ mg, (26.26±3.03) U/mg] and SOD [ (13.65±4.34) U/mg vs (24.62±4.19) U/ mg, (32.95±4.13) U/ mg]were all increased in a certain dose-dependent manner, and the difference was statistically significant (all P < 0.05) .

Conclusion

Propofol can increase the antioxidant capacity of myocardial cells in rats with intestinal ischemia-reperfusion injury, reduce inflammation, and thus protect the myocardium from injury. Its mechanism may be related to the activation of the Sirt1/Foxo1 pathway.

图1 光学显微镜下观察实验大鼠小肠组织(HE染色,×100)
图2 光学显微镜下观察大鼠心肌组织(HE染色,×200)
图3 光学显微镜下观察心肌组织(TUNEL染色,×200)
图4 丙泊酚对心肌组织Sirt1/Foxo1通路蛋白表达的影响
表1 丙泊酚对心肌组织Sirt1/Foxo1通路蛋白表达的影响( ± s
表2 丙泊酚对心肌组织MDA、GSH-Px、SOD水平的影响( ± s
表3 丙泊酚对心肌组织TNF-α、IL-1β、IL-6水平的影响(pg/mg, ± s
1
Ozturk D, Erdogan DG, Tanyeli Ayhan, et al. The protective effects of urapidil on lung tissue after intestinal ischemia-reperfusion injury[J]. Turk J Biochem, 2019,44(4):539-548.
2
Wen SH, Li X, Ling YH, et al. HMGB1-associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats[J]. FASEB J, 2020, 34(3):4384-4402.
3
Fang H, Zhang FX, Li HF, et al. PRR34-AS1 overexpression promotes protection of propofol pretreatment against ischemia/reperfusion injury in a mouse model after total knee arthroplasty via blockade of the JAK1-dependent JAK-STAT signaling pathway[J]. J Cell Physiol, 2020, 235(3):2545-2556.
4
Mo YS, Liu BJ, Qiu S, et al. Down-regulation of microRNAc alleviates neuropathic pain via the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve[J]. J Neurochem, 2020, 154(3):301-315.
5
Wang XW, Yuan BB, Cheng B, et al. Crocinalleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway[J]. Shock, 2019, 51(1):123-130.
6
Liao ZM, Li AN, Cai Y, et al. Skip participates in formation and lipid metabolism of beige adipose and might mediate the effects of SIRT1 activator BTM-0512 on beige remodeling[J]. Biochem Bioph Res Co, 2021, 537(1):109-117.
7
McAndrews KM, LeBleu VS, Kalluri R. SIRT1 regulates lysosome function and exosome Secretion[J]. Dev Cell, 2019, 49(3):302-303.
8
Xiong H, Chen S, Lai L, et al. Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis[J]. Neurobiol Aging, 2019, 79(1):30-42.
9
Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation[J]. Inflammation, 2020, 43(5):1589-1598.
10
Li YM, Sun JG, Hu LH, et al. Propofol-mediated cardioprotection dependent of microRNA-451/HMGB1 against myocardial ischemia-reperfusion injury[J]. J Cell Physiol, 2019, 234(12):23289-23301.
11
Almoiliqy M, Wen J, Xu B, et al. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF- κB and p53[J]. Acta Pharmacol Sin, 2020, 41(9):1208-1222.
12
Du J, Fan X, Yang B, et al. Irisin pretreatment ameliorates intestinal ischemia/reperfusion injury in mice through activation of the Nrf2 pathway[J]. Int Immunopharmacol, 2019, 73(1):225-235.
13
Chen S, Li X, Wang Y, et al. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway[J]. Mol Med Rep, 2019, 19(5):3633-3641.
14
Hausburg MA, Banton KL, Roman PE, et al. Effects of propofol on ischemia-reperfusion and traumatic brain injury[J]. J Crit Care, 2019, 56(1):281-287.
15
Wei QJ, Zhao JJ, Zhou XG, et al. Propofol can suppress renal ischemia-reperfusion injury through the activation of PI3K/AKT/mTOR signal pathway[J]. Gene, 2019, 708(1):14-20.
16
Nasser AS. Kaempferol protects against hydrogen peroxide-induced retinal pigment epithelium cell inflammation and apoptosis by activation of SIRT1 and inhibition of PARP1[J]. J Ocul Pharmacol Ther, 2020, 36(7):563-577.
17
Zhong JK, Ouyang HC, Sun MM, et al. Tanshinone IIA attenuates cardiac microvascular ischemia-reperfusion injury via regulating the SIRT1-PGC1α-mitochondrial apoptosis pathway[J]. Cell Stress Chaperones, 2019, 24(5):991-1003.
18
Wang G, Yao J, Li Z, et al. miR-34a-5p inhibition alleviates intestinal ischemia/reperfusion-induced reactive oxygen species accumulation and apoptosis via activation of SIRT1 signaling[J]. Antioxid Redox Signal, 2016, 24(17):961-973.
19
Ren BC, Zhang YF, Liu SS, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways[J]. J Cell Mol Med, 2020, 24(21):12355-12367.
20
Hansen LW, Khader A, Yang WL, et al. Sirtuin 1 activator SRT1720 protects against organ injury induced by Intestinal ischemia-reperfusion[J]. Shock, 2016, 45(4):359-366.
21
Mohammed ET, Hashem KS, Abdelazem AZ, et al. Prospective protective effect of ellagicacid as a SIRT1 activator in iron oxide nanoparticle-induced renal damage in rats[J]. Biol Trace Elem Res, 2020, 198(1):177-188.
22
Wang K, Hu W. Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway[J]. ActaBiochim Pol, 2020, 67(2):239-245.
[1] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[2] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[3] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 汪子涵, 张瑾, 肖飞, 梁朝阳. 常温体外肺灌注技术治疗肺缺血再灌注损伤的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 48-54.
[6] 张楠, 张瑀, 周萃星, 李正胜, 季诺, 薛冬, 陈依梦. N6-甲基腺嘌呤甲基化转移酶3在肾脏缺血再灌注损伤中动态变化分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 343-348.
[7] 周顺, 赵素侠, 时静静, 吴双双, 吴圆圆, 李金山. 丙泊酚-舒芬太尼复合七氟烷吸入对小儿腹腔镜疝囊高位结扎术的麻醉效果及安全性[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 603-607.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 段文忠, 白延霞, 徐文亭, 祁虹霞, 吕志坚. 七氟烷和丙泊酚在肝切除术中麻醉效果比较Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 640-645.
[10] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[13] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J/OL]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要