1 |
Cotsarelis G. Epithelial stem cells: a folliculocentric view[J]. J Invest Dermatol, 2006, 126(7): 1459-1468.
|
2 |
Li B, Hu W, Ma K, et al. Are hair follicle stem cells promising candidates for wound healing?[J]. Expert Opin Biol Ther, 2019, 19(2): 119-128.
|
3 |
Blanpain C, Fuchs E. Epidermal stem cells of the skin[J]. Annu Rev Cell Dev Biol, 2006, 22:339-373.
|
4 |
Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells[J]. Cell, 2001, 104(2): 233-245.
|
5 |
Cotsarelis G. Epithelial stem cells: a folliculocentric view[J]. J Invest Dermatol, 2006, 126(7): 1459-1468.
|
6 |
Turksen K. Preface. Stem cell renewal and cell-cell communication [J]. Methods Mol Biol, 2015, 1212:v. doi: 10.1007/978-1-4939-2590-2.
|
7 |
Najafzadeh N, Nobakht M, Pourheydar B, et al. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury[J]. Neural Regen Res, 2013, 8(36): 3365-3372.
|
8 |
Najafzadeh N, Esmaeilzade B, Dastan Imcheh M. Hair follicle stem cells: In vitro and in vivo neural differentiation[J]. World J Stem Cells, 2015, 7(5): 866-872.
|
9 |
Liu F, Uchugonova A, Kimura H, et al. The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla[J]. Cell Cycle, 2011, 10(5):830-839.
|
10 |
Najafzadeh N, Sagha M, Heydari Tajaddod S, et al. In vitro neural differentiation of CD34 (+) stem cell populations in hair follicles by three different neural induction protocols[J]. In Vitro Cell Dev Biol Anim, 2015, 51(2): 192-203.
|
11 |
Aoki H, Hara A, Motohashi T, et al. Keratinocyte stem cells but not melanocyte stem cells are the primary target for radiation-induced hair graying[J]. J Invest Dermatol, 2013, 133(9): 2143-2151.
|
12 |
Babakhani A, Hashemi P, Mohajer Ansari J, et al. In vitro Differentiation of Hair Follicle Stem Cell into Keratinocyte by Simvastatin[J]. Iran Biomed J, 2019, 23(6): 404-411.
|
13 |
Xu ZC, Zhang Q, Li H. Human hair follicle stem cell differentiation into contractile smooth muscle cells is induced by transforming growth factor-β1 and platelet-derived growth factor BB[J]. Mol Med Rep, 2013, 8(6): 1715-1721.
|
14 |
Xu ZC, Zhang Q, Li H. Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors[J]. Mol Med Rep, 2014, 9(1): 204-210.
|
15 |
Ma D, Lee ST, Chua AWC. Isolation and culture of hair follicle dermal sheath mesenchymal stromal cells[J]. Methods Mol Biol, 2019, 1993:61-70.
|
16 |
Yashiro M, Mii S, Aki R, et al. From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells[J]. Cell Cycle, 2015, 14(14): 2362-2366.
|
17 |
Yamazaki A, Yashiro M, Mii S, et al. Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets[J]. Cell Cycle, 2016, 15(5): 760-765.
|
18 |
Pasolli HA. The hair follicle bulge: a niche for adult stem cells[J]. Microsc Microanal, 2011, 17(4): 513-519.
|
19 |
Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis[J]. Cell, 1990, 61(7): 1329-1337.
|
20 |
Paus R, Cotsarelis G. The biology of hair follicles[J]. N Engl J Med, 1999, 341(7): 491-497.
|
21 |
Stenn KS, Paus R. Controls of hair follicle cycling[J]. Physiol Rev, 2001, 81(1): 449-494.
|
22 |
Fuchs E. Cell biology: More than skin deep[J]. J Cell Biol, 2015, 209(5): 629-631.
|
23 |
Zhang H, Zhang S, Zhao H, et al. Ovine hair follicle stem cells derived from single vibrissae reconstitute haired skin[J]. Int J Mol Sci, 2015, 16(8): 17779-17797.
|
24 |
Su YS, Miao Y, Jiang JD, et al. A simple and rapid model for hair-follicle regeneration in the nude mouse[J]. Clin Exp Dermatol, 2015, 40(6): 653-658.
|
25 |
孙锡金, 胡志奇, 苗勇. 小鼠毛囊细胞注射移植实验研究[J]. 中华整形外科杂志, 2012, (01): 44-49.
|
26 |
Li G, Tang X, Zhang S, et al. SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice[J]. EMBO J, 2020, 39(18):e104365.
|
27 |
Gentile P. Autologous cellular method using micrografts of human adipose tissue derived follicle stem cells in androgenic alopecia[J]. Int J Mol Sci, 2019, 20(14):3446.
|
28 |
Elmaadawi IH, Mohamed BM, Ibrahim ZAS, et al. Stem cell therapy as a novel therapeutic intervention for resistant cases of alopecia areata and androgenetic alopecia[J]. J Dermatolog Treat, 2018, 29(5): 431-440.
|
29 |
Gonzales KAU, Fuchs E. Skin and its regenerative powers: An alliance between stem cells and their niche[J]. Dev Cell, 2017, 43(4): 387-401.
|
30 |
Ansell DM, Kloepper JE, Thomason HA, et al. Exploring the "hair growth-wound healing connection" : anagen phase promotes wound re-epithelialization[J]. J Invest Dermatol, 2011, 131(2): 518-528.
|
31 |
Vagnozzi AN, Reiter JF, Wong SY. Hair follicle and interfollicular epidermal stem cells make varying contributions to wound regeneration[J]. Cell Cycle, 2015, 14(21): 3408-3417.
|
32 |
Brownell I, Guevara E, Bai CB, et al. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells[J]. Cell Stem Cell, 2011, 8(5): 552-565.
|
33 |
Cheng C, Guo GF, Martinez JA, et al. Dynamic plasticity of axons within a cutaneous milieu[J]. J Neurosci, 2010, 30(44): 14735-14744.
|
34 |
Langton AK, Herrick SE, Headon DJ. An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution[J]. J Invest Dermatol, 2008, 128(5): 1311-1318.
|
35 |
Nakrieko KA, Rudkouskaya A, Irvine TS, et al. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury[J]. Mol Biol Cell, 2011, 22(14): 2532-2540.
|
36 |
Ito M, Cotsarelis G. Is the hair follicle necessary for normal wound healing?[J]. J Invest Dermatol, 2008, 128(5): 1059-1061.
|
37 |
Heidari F, Yari A, Rasoolijazi H, et al. Bulge hair follicle stem cells accelerate cutaneous wound healing in rats[J]. Wounds, 2016, 28(4): 132-141.
|
38 |
Claudinot S, Nicolas M, Oshima H, et al. Long-term renewal of hair follicles from clonogenic multipotent stem cells[J]. Proc Natl Acad Sci U S A, 2005, 102(41): 14677-14682.
|
39 |
Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis[J]. Nat Med, 2005, 11(12): 1351-1354.
|
40 |
Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells[J]. Nat Biotechnol, 2004, 22(4): 411-417.
|
41 |
Blanpain C, Lowry WE, Geoghegan A, et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche[J]. Cell, 2004, 118(5): 635-648.
|
42 |
Morris RJ, Potten CS. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen[J]. J Invest Dermatol, 1999, 112(4): 470-475.
|
43 |
Chovatiya GL, Sarate RM, Sunkara RR, et al. Secretory phospholipase A-IIA overexpressing mice exhibit cyclic alopecia mediated through aberrant hair shaft differentiation and impaired wound healing response[J]. Sci Rep, 2017, 7(1): 11619.
|
44 |
Heidari F, Yari A, Rasoolijazi H, et al. Bulge hair follicle stem cells accelerate cutaneous wound healing in rats[J]. Wounds, 2016, 28(4): 132-141.
|
45 |
Li Y, Xia WD, Van der Merwe L, et al. Efficacy of stem cell therapy for burn wounds: a systematic review and meta-analysis of preclinical studies[J]. Stem Cell Res Ther, 2020, 11(1): 322.
|
46 |
Quan R, Du W, Zheng X, et al. VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis[J]. J Cell Mol Med, 2017, 21(8): 1593-1604.
|
47 |
史明艳, 高雪, 杨学义, 等. 构建具有毛囊结构的组织工程皮肤及移植研究[J]. 畜牧兽医学报, 2019, 50(10): 2097-2104.
|
48 |
Liu F, Zhou H, Du W, et al. Hair follicle stem cells combined with human allogeneic acellular amniotic membrane for repair of full thickness skin defects in nude mice.[J]. J Tissue Eng Regen Med, 2020, 14(5): 723-735.
|
49 |
Jiménez F, Garde C, Poblet E, et al. A pilot clinical study of hair grafting in chronic leg ulcers[J]. Wound Repair Regen, 2012, 20(6): 806-814.
|
50 |
Liu JQ, Zhao KB, Feng ZH, et al. Hair follicle units promote re-epithelialization in chronic cutaneous wounds: A clinical case series study.[J]. Exp Ther Med, 2015, 10(1): 25-30.
|
51 |
Martínez-Martínez ML, Escario Travesedo E, Jiménez Acosta F. Hair-follicle transplant into chronic ulcers: A new graft concept[J]. Actas Dermosifiliogr, 2017, 108(6): 524-531.
|
52 |
Martínez ML, Escario E, Poblet E, et al. Hair follicle-containing punch grafts accelerate chronic ulcer healing: A randomized controlled trial[J]. J Am Acad Dermatol, 2016, 75(5): 1007-1014.
|
53 |
Garcin CL, Ansell DM. The battle of the bulge: re-evaluating hair follicle stem cells in wound repair[J]. Exp Dermatol, 2017, 26(2): 101-104.
|
54 |
Amoh Y, Kanoh M, Niiyama S, et al. Human and mouse hair follicles contain both multipotent and monopotent stem cells[J]. Cell Cycle, 2009, 8(1): 176-177.
|
55 |
Mii S, Duong J, Tome Y, et al. Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells promote whisker sensory-nerve growth in long-term 3D-Gelfoam® histoculture[J]. Methods Mol Biol, 2016, 145339-145347.
|
56 |
Amoh Y, Kanoh M, Niiyama S, et al. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells[J]. J Cell Biochem, 2009, 107(5): 1016-1020.
|
57 |
Hoffman RM, Amoh Y. Hair follicle-associated pluripotent(HAP) stem cells[J]. Prog Mol Biol Transl Sci, 2018, 160:23-28.
|
58 |
Hoffman RM, Mii S, Duong J, et al. Nerve growth and interaction in gelfoam histoculture: a nervous system organoid[J]. Methods Mol Biol, 2018, 1760:163-186.
|
59 |
Obara K, Tohgi N, Shirai K, et al. Hair-follicle-associated pluripotent (HAP) stem cells encapsulated on polyvinylidene fluoride membranes (PFM) promote functional recovery from spinal cord injury[J]. Stem Cell Rev Rep, 2019, 15(1): 59-66.
|
60 |
Amoh Y, Li L, Campillo R, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves[J]. Proc Natl Acad Sci U S A, 2005, 102(49): 17734-17738.
|
61 |
Hoffman RM. Nestin-expressing hair follicle-accessible pluripotent stem cells for nerve and spinal cord repair[J]. Cells Tissues Organs, 2014, 200(1): 42-47.
|
62 |
Liu F, Hoffman RM. Hair follicle-associated pluripotent (HAP) stem cells in gelfoam histoculture for use in spinal cord repair[J]. Methods Mol Biol, 2018, 1760:145-162.
|
63 |
Yamazaki A, Obara K, Tohgi N, et al. Implanted hair-follicle-associated pluripotent (HAP) stem cells encapsulated in polyvinylidene fluoride membrane cylinders promote effective recovery of peripheral nerve injury.[J]. Cell Cycle, 2017, 16(20): 1927-1932.
|
64 |
Okano H, Nakamura M, Yoshida K, et al. Steps toward safe cell therapy using induced pluripotent stem cells.[J]. Circ Res, 2013, 112(3): 523-533.
|
65 |
Nori S, Okada Y, Yasuda A, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice.[J]. Proc Natl Acad Sci U S A, 2011, 108(40): 16825-16830.
|
66 |
Amoh Y, Katsuoka K, Hoffman RM. Peripheral-Nerve and Spinal-Cord regeneration in mice using hair-follicle-associated pluripotent (HAP) stem cells.[J]. Methods Mol Biol, 2016, 1453:21-32.
|
67 |
席海燕, 丁海麦, 李晓晶, 等. 小鼠毛囊干细胞向心肌细胞的诱导分化及其鉴定[J]. 重庆医学, 2020, 49(18): 534-537.
|
68 |
Kim YH, Kim BJ, Kim SM, et al. Induction of cardiomyocytelike cells from hair follicle cells in mice.[J]. Int J Mol Med, 2019, 43(5): 2230-2240.
|
69 |
Hoffman RM. Human hair follicle associated-pluripotent (hHAP) stem cells differentiate to cardiac muscle cells[J]. Methods Mol Biol, 2019, 1879:385-392.
|
70 |
Tohgi N, Obara K, Yashiro M, et al. Human hair-follicle associated pluripotent (hHAP) stem cells differentiate to cardiac-muscle cells.[J]. Cell Cycle, 2017, 16(1): 95-99.
|
71 |
Yashiro M, Mii S, Aki R, et al. Protocols for efficient differentiation of hair follicle-associated pluripotent (HAP) stem cells to beating cardiac muscle cells[J]. Methods Mol Biol, 2016, 1453:151-159.
|
72 |
Shirai K, Hamada Y, Arakawa N, et al. Hypoxia enhances differentiation of hair follicle-associated-pluripotent (HAP) stem cells to cardiac-muscle cells[J]. J Cell Biochem, 2017, 118(3):554-558.
|
73 |
Ferrari S, Pellegrini G, Matsui T, et al. Gene therapy in combination with tissue engineering to treat epidermolysis bullosa.[J]. Expert Opin Biol Ther, 2006, 6(4): 367-378.
|
74 |
Mavilio F, Pellegrini G, Ferrari S, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells.[J]. Nat Med, 2006, 12(12): 1397-1402.
|
75 |
Tiede S, Kloepper JE, Bodò E, et al. Hair follicle stem cells: walking the maze.[J]. Eur J Cell Biol, 2007, 86(7): 355-376.
|
76 |
李承新. 激光脱毛疗效回顾及进展[J]. 中国激光医学杂志, 2014, 23(5): 271.
|