切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 297 -302. doi: 10.3877/cma.j.issn.2095-1221.2020.05.008

所属专题: 文献

综述

干细胞治疗心脏病的研究进展
邓海燕1, 刘馨2, 缪着1, 马波1,()   
  1. 1. 650500 昆明医科大学药学院暨云南省天然药物药理重点实验室;653100 玉溪,云南时光肌生物技术有限公司
    2. 653100 玉溪,云南时光肌生物技术有限公司;650033 昆明,云南省细胞工程中心有限公司
  • 收稿日期:2020-04-07 出版日期:2020-10-01
  • 通信作者: 马波

Research progress of stem cells in the treatment of heart diseases

Haiyan Deng1, Xin Liu2, Zhuo Miao1, Bo Ma1,()   

  1. 1. Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Yunnan Reborn Biotech Co. LTD, Yuxi 653100, China
    2. Yunnan Reborn Biotech Co. LTD, Yuxi 653100, China; Yunnan Cell Engineering Center Co.Ltd, Kunming 650033, China
  • Received:2020-04-07 Published:2020-10-01
  • Corresponding author: Bo Ma
  • About author:
    Corresponding author: Ma Bo, Email:
引用本文:

邓海燕, 刘馨, 缪着, 马波. 干细胞治疗心脏病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(05): 297-302.

Haiyan Deng, Xin Liu, Zhuo Miao, Bo Ma. Research progress of stem cells in the treatment of heart diseases[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(05): 297-302.

心脏病患者的心脏组织发生病变,会对心脏功能造成不同程度的影响,成人的心肌细胞(CMs)再生能力差,无法进行自我修复,目前心脏病的治疗方法不能恢复已经损伤的心功能。经过长期的观察和研究,多种干细胞与外泌体均具有治疗作用。多种干细胞可以分化为心脏祖细胞(CPCs)或心肌样细胞,也可以分泌生物活性因子修复坏死心肌组织,改善受损的心功能。近年来,干细胞移植策略和治疗方案的改进提升了其在心脏病中的治疗效果。本文比较了不同类型干细胞在治疗心脏病上的应用,并介绍了干细胞移植的改进方法。

Heart tissue in patients with heart disease is diseased and has different degrees of impact on cardiac function. Adults have poor cardiomyocyte regeneration and therefore are unable to self-repair, nor can current heart disease treatments restore impaired cardiac function. After long-term observation and research, a variety of stem cells and exosomes have been proved to be effective in treating heart diseases. Various stem cells can differentiate into cardiac progenitor cells or cardiomyoid cells, and can also secrete bioactive factors to repair necrotic myocardial tissue and improve impaired cardiac function. Recently, improvements in stem cell transplantation strategies and treatment have improved therapeutic efficacy in heart disease. This paper compares the application of different stem cells in the treatment and introduces improved methods of stem cell transplantation.

表1 干细胞移植策略的比较
1
马丽媛,吴亚哲,陈伟伟.《中国心血管病报告2018》要点介绍[J]. 中华高血压杂志, 2019, 27(8):712-716.
2
刘丹,何涛. 缺血性心力衰竭的非药物治疗进展[J]. 山东医药, 2018, 58(33):91-93.
3
曲泽澎,贾兆锋,黄曦, 等. 间充质干细胞在器官移植中的应用研究进展[J]. 器官移植, 2018, 9(5):348-353.
4
Wang M, Hu R, Yang Y, et al. In vivo ultrasound molecular imaging of SDF-1 expression in a swine model of acute myocardial infarction[J/OL]. Front Pharmacol, 2019, 10:899.
5
Bareja A, Patel S, Hodgkinson CP, et al. Understanding the mechanism of bias signaling of the insulin-like growth factor 1 receptor: Effects of LL37 and HASF[J]. Cell Signal, 2018, 46:113-119.
6
Datta R, Bansal T, Rana S, et al. Myocyte-derived Hsp90 modulates collagen upregulation via biphasic activation of STAT-3 in fibroblasts during cardiac hypertrophy[J/OL]. Mol cell Biol, 2017, 37(6):e00611-16.
7
Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J]. Stem Cell Reports, 2014, 2(5):606-619.
8
Xiao J, Pan Y, Li XH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J/OL]. Cell death dis, 2016, 7(6):e2277.
9
Nguyen PK, Neofytou E, Rhee JW, et al. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review[J]. JAMA Cardiol, 2016, 1(8):953-962.
10
Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction[J]. Circ Res, 2015, 117(1):52-64.
11
Liu B, Lee BW, Nakanishi K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5):293-303.
12
Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report[J]. Eur Heart J, 2015, 36(30):2011-2017.
13
Menasché P, Vanneaux V, Hagege A, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction[J]. J Am Coll Cardiol, 2018, 71(4):429-438.
14
Silva Dos Santos D, Brasil GV, Ramos IPR, et al. Embryonic stem cell-derived cardiomyocytes for the treatment of doxorubicin-induced cardiomyopathy[J/OL]. Stem Cell Res Ther, 2018, 9(1):30.
15
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
16
Sun X, Nunes SS. Bioengineering approaches to mature human pluripotent stem cell-derived cardiomyocytes[J/OL]. Front Cell Dev Biol, 2017, 5:19.
17
Gao L, Gregorich ZR, Zhu W, et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in Swine[J]. Circulation, 2018, 137(16):1712-1730.
18
Streckfuss-Bömeke K, Tiburcy M, Fomin A, et al. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes[J]. J Mol Cell Cardiol, 2017, 113:9-21.
19
Tang XL, Li Q, Rokosh G, et al. Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at Least One Year[J]. Circ Res, 2016, 118(7):1091-1105.
20
Ishigami S, Ohtsuki S, Tarui S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial[J]. Circ Res, 2015, 116(4):653-664.
21
Ishigami S, Ohtsuki S, Eitoku T, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: The PERSEUS (Cardiac Progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial[J]. Circ Res, 2017, 120(7):1162-1173.
22
Bittle GJ, Morales D, Deatrick KB, et al. Stem cell therapy for hypoplastic left heart syndrome: Mechanism, clinical application, and future directions[J]. Circ Res, 2018, 123(2):288-300.
23
Hare JM, DiFede DL, Rieger AC, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial[J]. J Am Coll Cardiol, 2017, 69(5):526-537.
24
Premer C, Wanschel A, Porras V, et al. Mesenchymal stem cell secretion of sdf-1alpha modulates endothelial function in dilated cardiomyopathy[J/OL]. Front Physiol, 2019, 10:1182.
25
Fontaine MJ, Shih H, Schafer R, et al. Unraveling the mesenchymal stromal cells' paracrine immunomodulatory effects[J]. Transfus Med Rev, 2016, 30(1):37-43.
26
Epstein SE, Luger D, Lipinski MJ. Paracrine-mediated systemic anti-inflammatory activity of intravenously administered mesenchymal stem cells: A transformative strategy for cardiac stem cell therapeutics[J]. Circ Res, 2017, 121(9):1044-1046.
27
Luger D, Lipinski MJ, Westman PC, et al. Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy[J]. Circ Res, 2017, 120(10):1598-1613.
28
Butler J, Epstein SE, Greene SJ, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: Safety and efficacy results of a phase II-A randomized trial[J]. Circ Res, 2017, 120(2):332-340.
29
Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation[J]. Cell Physiol Biochem, 2015, 37(6):2415-2424.
30
Bellin G, Gardin C, Ferroni L, et al. Exosome in cardiovascular diseases: a complex world full of hope[J/OL]. Cells, 2019, 8(2):166.
31
de Couto G, Gallet R, Cambier L, et al. Exosomal microrna transfer into macrophages mediates cellular postconditioning[J]. Circulation, 2017, 136(2):200-214.
32
Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21[J]. Stem Cells Transl Med, 2017, 6(1):209-222.
33
Zhang CS, Shao K, Liu CW, et al. Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15):6691-6699.
34
张海涛,林文勇,解曼曼, 等. 冠心病患者外周血外泌体中microRNA基因芯片的差异性表达[J]. 临床心血管病杂志, 2019, 35(6):501-505.
35
Watson DC, Bayik D, Srivatsan A, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles[J]. Biomaterials, 2016, 105:195-205.
36
Vandergriff A, Huang K, Shen D, et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J]. Theranostics, 2018, 8(7):1869-1878.
37
Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics, 2018, 8(22):6163-6177.
38
Tang J, Su T, Huang K, et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles[J]. Nat Biomed Eng, 2018, 2:17-26.
39
Ma J, Zhao Y, Sun L, et al. Exosomes derived from akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D[J]. Stem Cells Transl Med, 2017, 6(1):51-59.
40
Cho HM, Lee KH, Shen YM, et al. Transplantation of hMSCs genome edited with LEF1 improves cardio-protective effects in myocardial infarction[J]. Mol Ther Nucleic Acids, 2020, 19:1186-1197.
41
刘志江,束波,石蓓, 等. HMGB1预处理骨髓间充质干细胞移植治疗心肌梗死大鼠的实验研究[J]. 临床心血管病杂志, 2017, 33(7):683-687.
42
Muller P, Lemcke H, David R. Stem cell therapy in heart diseases-cell types, mechanisms and improvement strategies[J]. Cell Physiol Biochem, 2018, 48(6): 2607-2655.
[1] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[2] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[3] 王濛, 王華麟, 王鉴, 孙锟. 先天性心脏病宫内诊疗现状与展望[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 481-485.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[6] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[7] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[13] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[14] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[15] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?