切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 363 -368. doi: 10.3877/cma.j.issn.2095-1221.2019.06.008

所属专题: 文献

综述

miRNA在心肌梗死中的作用及其机制研究进展
曹润峰1, 沈立1,()   
  1. 1. 200062 上海交通大学附属儿童医院 上海市儿童医院心胸外科
  • 收稿日期:2019-08-18 出版日期:2019-12-01
  • 通信作者: 沈立
  • 基金资助:
    国家自然科学基金资助项目(81371449)

Advances in the role of miRNAs in myocardial infarction and its mechanisms

Runfeng Cao1, Li Shen1,()   

  1. 1. Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
  • Received:2019-08-18 Published:2019-12-01
  • Corresponding author: Li Shen
  • About author:
    Corresponding author: Shen Li, Email:
引用本文:

曹润峰, 沈立. miRNA在心肌梗死中的作用及其机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(06): 363-368.

Runfeng Cao, Li Shen. Advances in the role of miRNAs in myocardial infarction and its mechanisms[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(06): 363-368.

急性心肌梗死(AMI)是最常见的心血管事件,具有高发病率和高死亡率,严重威胁人类生命健康。微小RNA(miRNA)通过调节心肌细胞炎症、纤维化、细胞自噬及新生血管形成的表型机制发挥功能。本综述探讨了心肌梗死后miRNA上调及下调的分子机制,以及miRNA对心肌梗死早期诊断中的价值。

Acute myocardial infarction (AMI) is the most common cardiovascular event with high morbidity and mortality, which is a serious threat to human health. MicroRNAs (miRNAs) act as an important role by regulating cardiomyocyte inflammatory and fibrosis, regulation of autophagy and neovascularization. Here, we review the molecular mechanisms of up-regulation and down-regulation of miRNA after myocardial infarction and the early diagnostic value of miRNA for myocardial infarction

表1 血清miRNA在心肌梗死早期诊断的临床研究
表2 心梗时上调而起保护作用的miRNA及其分子机制
miRNA 研究对象 信号通路及靶点 作用细胞 效应机制 引文
miR-21 小鼠 TGF-β/ Smad7信号通路 心脏成纤维细胞 抑制心脏纤维化 [20]
miR-23a 小鼠 锰超氧化物歧化酶(MnSOD) 心肌细胞 抑制心肌凋亡 [21]
miR-92a 小鼠 自噬及代谢相关基因 内皮细胞
心肌细胞
抑制自噬,调节代谢 [22]
miR-125b
miR-125b-5p
小鼠 抑制促凋亡基因p53和BAK1及调节p53-Bnip3信号传导,抑制bak1和klf13基因 心肌细胞 抑制心肌细胞凋亡 [23,24]
[25]
miR-132 小鼠 调节Akt / eNOS / Bcl-2信号传导途径,抑制Ras-GTP酶活化蛋白和甲基-CpG结合蛋白2 内皮细胞 促进血管形成 [26]
miR-146b 小鼠 靶向Notch1 心肌细胞 抗凋亡及抑制炎症反应 [27]
miR-199a 小鼠 靶向GSK3β / mTOR信号传导及抑制Atg5 心肌细胞 抑制自噬及心肌肥大 [28]
miR-499 大鼠H9c2细胞 靶向SOX6,上调Bcl-2水平及下调Bax和caspase-3的表达水平 心肌细胞 抑制凋亡 [29]
miR-133a 大鼠 调节TGF-β1,Caspase9和Caspase3 心肌细胞
成纤维细胞
抑制凋亡抑制心肌纤维化 [30]
miR-144 miR-451 小鼠 靶向调节CUGBP2-COX-2 心肌细胞 抑制心肌凋亡 [31]
miR-138 先心病心肌样本+ H9C2细胞 靶向MLK3/JNK /c-jun通路 心肌细胞 抑制心肌凋亡 [32]
miR-874 小鼠 靶向STAT3-JAK2 / STAT3信号传导途径 心肌细胞 抑制心肌凋亡 [33]
miR-26a 大鼠 调节Wnt信号通路,抑制GSK3β表达和促进Cx43表达 心肌细胞 降低心肌细胞的损伤 [34]
miR-210 小鼠 增加中性鞘磷脂酶2(nSMase2)的表达 心肌细胞心脏内皮细胞、成纤维细胞 抑制凋亡,增加新生血管密度,抑制心脏纤维化 [35]
miR-19a 大鼠 靶向PTEN的表达,激活Akt / ERK信号传导途径 心肌细胞 减少心肌细胞凋亡和维持线粒体膜电位 [36]
miR-126 缺血性心肌病裸鼠 促进HGF,TIMP-1/TIMP-2的表达 内皮细胞 促进新生血管形成,降低炎症反应 [37]
miR-21 小鼠 靶向抑制PDCD4 心肌细胞 抑制心肌细胞自噬 [38]
miR-126 小鼠 抑制Spred-1的表达来增强VEGF和FGF的促血管生成 内皮细胞 诱导内皮细胞的微血管形成和迁移 [39]
miR-214 心梗患者血清 抑制PUMA,PTEN,Bax和caspase 7基因的表达 心肌细胞 抑制心肌细胞的凋亡 [40]
miR-208b 大鼠 抑制GATA4 心脏成纤维细胞 抑制心肌纤维化 [41]
miR-211 大鼠 STAT3 / miR-211 / STAT5A信号传导 间充质干细胞 降低MI后不良重建 [42]
miR-206 大鼠 靶向Pim-1激酶 间充质干细胞 刺激细胞循环并增强体内心脏再生 [43]
miR-532 小鼠 调节miR-532-prss23轴 内皮-间质转化(EndMT) 减少EndMT,增加内皮细胞增值及新生血管的密度 [44]
表3 心梗时下调而起保护作用的miRNA及其分子机制
表4 心梗时上调而起伤害作用的miRNA及其分子机制
1
Anderson JL, Morrow DA. Acute Myocardial Infarction[J]. N Engl J Med, 2017, 376(21):2053-2064.
2
Humphreys DT, Westman BJ, Martin DI, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function[J]. Proc Natl Acad Sci U S A, 2005, 102(47):16961-16966.
3
Boeddinghaus J, Nestelberger T, Twerenbold R, et al. High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction[J]. Clin Chem, 2019, 65(7):893-904.
4
Malik ZA, Kott KS, Poe AJ, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics[J]. Am J Physiol Heart Circ Physiol, 2013, 304(7):954-965.
5
Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage[J]. Circ Cardiovasc Genet, 2011, 4(4):446-454.
6
Zhao X, Jia Y, Chen H, et al. Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury[J]. Exp Ther Med, 2019, 18(1):179-187.
7
Wang Y, Chang W, Zhang Y, et al. Circulating miR-22-5p and miR- 122- 5p are promising novel biomarkers for diagnosis of acute myocardial infarction[J]. J Cell Physiol, 2019, 234(4):4778-4786.
8
Zhu J, Yao K, Wang Q, et al. Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 40(6):1591-1602.
9
Li H, Zhang P, Li F, et al. Plasma miR-22-5p, miR-132-5p, and miR- 150-3p are associated with acute myocardial infarction[J]. Biomed Res Int, 2019, (2019):5012648.
10
Xue S, Zhu W, Liu D, et al. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction[J]. Mol Med, 2019, 25(1): 18.
11
Xue S, Liu D, Zhu W, et al. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction[J]. Front Physiol, 2019, (10):123.
12
Lin X, Zhang S, Huo Z. Serum circulating miR-150 is a predictor of post-acute myocardial infarction heart failure[J]. Int Heart J, 2019, 60(2):280-286.
13
Gholikhani-Darbroud R, Khaki-Khatibi F, Mansouri F, et al. Decreased circulatory microRNA-4478 as a specific biomarker for diagnosing non-ST-segment elevation myocardial infarction (NSTEMI) and its association with soluble leptin receptor[J]. Bratisl Lek Listy, 2017, 118(11):684-690.
14
Yang S, Fu C, Xu R, et al. Serum microRNA-302b: the novel biomarker for diagnosis of acute myocardial infarction[J]. Br J Biomed Sci, 2017, 74(4):214-216.
15
Yuan L, Liu X, Chen F, et al. Diagnostic and prognostic value of circulating microrna-133a in patients with acute myocardial infarction[J]. Clin Lab, 2016, 62(7):1233-1241.
16
Liu X, Yuan L, Chen F, et al. Circulating miR-208b: a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction[J]. Clin Lab, 2017, 63(1):101-109.
17
Coskunpinar E, Cakmak HA, Kalkan AK, et al. Circulating miR- 221- 3p as a novel marker for early prediction of acute myocardial infarction[J]. Gene, 2016, 591(1):90-96.
18
Aurora AB, Mahmoud AI, Luo X, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death[J]. J Clin Invest, 2012, 122(4):1222-1232.
19
Qian L, Van Laake LW, Huang Y, et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J]. J Exp Med, 2011, 208(3):549-560.
20
Yuan J, Chen H, Ge D, et al. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting smad7[J]. Cell Physiol Biochem, 2017, 42(6):2207-2219.
21
Long B, Gan TY, Zhang RC, et al. miR-23a regulates cardiomyocyte apoptosis by targeting manganese superoxide dismutase[J]. Mol Cells, 2017, 40(8):542-549.
22
Rogg EM, Abplanalp WT, Bischof C, et al. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action[J]. Circulation, 2018, 138(22):2545-2558.
23
Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR- 125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics, 2018, 8(22):6163-6177.
24
Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b[J]. Circ Res, 2018, 123(5):564-578.
25
Bayoumi AS, Park KM, Wang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes[J]. J Mol Cell Cardiol, 2018, (114):72-82.
26
Katare R, Riu F, Mitchell K, et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132[J]. Circ Res, 2011, 109(8):894-906.
27
Wang X, Yu Y. MiR-146b protect against sepsis induced mice myocardial injury through inhibition of Notch1[J]. J Mol Histol, 2018, 49(4):411-417.
28
Li Z, Song Y, Liu L, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J]. Cell Death Differ, 2017, 24(7):1205-1213.
29
Shi Y, Han Y, Niu L, et al. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6[J]. Biotechnol Lett, 2019, 41(6-7):837-847.
30
Chen H, Lou L, Zhang D, et al. Qiliqiangxin Capsule Improves Cardiac Function and Attenuates Cardiac Remodeling by Upregulating miR-133a after Myocardial Infarction in Rats[J]. Evid Based Complement Alternat Med, 2019, (2019):7528214.
31
Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death[J]. J Mol Cell Cardiol, 2010, 49(5):841-850.
32
He S, Liu P, Jian Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway[J]. Biochem Biophys Res Commun, 2013, 441(4):763-769.
33
Chen PJ, Shang AQ, Yang JP, et al. microRNA-874 inhibition targeting STAT3 protects the heart from ischemia-reperfusion injury by attenuating cardiomyocyte apoptosis in a mouse model[J]. J Cell Physiol, 2019, 234(5):6182-6193.
34
Park H, Park H, Mun D, et al. Extracellular vesicles derived from hypoxic human mesenchymal stem cells attenuate GSK3beta expression via miRNA-26a in an ischemia-reperfusion injury model[J]. Yonsei Med J, 2018, 59(6):736-745.
35
Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8):1659-1670.
36
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol, 2015, (182):349-360.
37
Li H, Liu Q, Wang N, et al. Transplantation of endothelial progenitor cells overexpressing miR-126-3p improves heart function in ischemic cardiomyopathy[J]. Circ J, 2018, 82(9):2332-2341.
38
Xiao J, Pan Y, Li XH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J]. Cell Death Dis, 2016, 7(6):e2277.
39
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-Overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
40
Yin Y, Lv L, Wang W. Expression of miRNA-214 in the sera of elderly patients with acute myocardial infarction and its effect on cardiomyocyte apoptosis[J]. Exp Ther Med, 2019, 17(6):4657-4662.
41
Zhou C, Cui Q, Su G, et al. MicroRNA-208b alleviates post-infarction myocardial fibrosis in a rat model by inhibiting GATA4[J]. Med Sci Monit, 2016, (22):1808-1816.
42
Hu X, Chen P, Wu Y, et al. MiR-211/STAT5A Signaling modulates migration of mesenchymal stem cells to improve its therapeutic efficacy[J]. Stem Cells, 2016, 34(7):1846-1858.
43
Zhang Y, Lei W, Yan W, et al. microRNA-206 is involved in survival of hypoxia preconditioned mesenchymal stem cells through targeting Pim-1 kinase[J]. Stem Cell Res Ther, 2016, 7(1):61.
44
Bayoumi AS, Teoh JP, Aonuma T, et al. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition[J]. Cardiovasc Res, 2017, 113(13):1603-1614.
45
Song CL, Liu B, Diao HY, et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1[J]. Oncotarget, 2016, 7(26):39740-39757.
46
Yuan L, Fan L, Li Q, et al. Inhibition of miR-181b-5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3[J]. J Cell Biochem, 2019, 120(12):19647-19659.
47
Pan H, Zhu L. Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22[J]. Biomed Pharmacother, 2018, 106:225-231.
48
Frank D, Gantenberg J, Boomgaarden I, et al. MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3[J]. J Mol Cell Cardiol, 2012, 52(3):711-717.
49
Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009, 119(17):2357-2366.
50
Li J, Li Y, Jiao J, et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis[J]. Mol Cell Biol, 2014, 34(10):1788-1799.
51
Hinkel R, Penzkofer D, Zuhlke S, et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model[J]. Circulation, 2013, 128(10):1066-1075.
52
Wang L, Huang H, Fan Y, et al. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway[J]. Oxid Med Cell Longev, 2014, (2014):960362.
53
Huang X, Huang F, Yang D, et al. Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes[J]. J Cell Mol Med, 2012, 16(11):2637-2646.
54
Li X, Kong M, Jiang D, et al. MicroRNA-150 aggravates H2O2-induced cardiac myocyte injury by down-regulating c-myb gene[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45(9):734-741.
55
Garikipati VN, Krishnamurthy P, Verma SK, et al. Negative regulation of miR-375 by interleukin-10 enhances bone marrow-derived progenitor cell-mediated myocardial repair and function after myocardial infarction[J]. Stem Cells, 2015, 33(12):3519-3529.
56
Hullinger TG, Montgomery RL, Seto AG, et al. Inhibition of miR-15 protects against cardiac ischemic injury[J]. Circ Res, 2012, 110(1):71-81.
57
Zhao D, Li C, Yan H, et al. Cardiomyocyte derived miR-328 promotes cardiac fibrosis by paracrinely regulating adjacent fibroblasts[J]. Cell Physiol Biochem, 2018, 46(4):1555-1565.
58
Sun C, Liu H, Guo J, et al. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3[J]. Sci Rep, 2017, 7(1):7460.
59
Fan F, Sun A, Zhao H, et al. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2[J]. Curr Pharm Des, 2013, 19(27):4865-4873.
60
Hao YL, Fang HC, Zhao HL, et al. The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway[J]. Am J Physiol Cell Physiol, 2018, 315(3):C380-C388.
61
Nie L, Zhao YN, Luo HY, et al. MiR-20 regulates myocardiac ischemia by targeting KATP subunit Kir6.1[J]. J Huazhong Univ Sci Technolog Med Sci, 2017, 37(4):486-490.
62
Nishi H, Ono K, Iwanaga Y, et al. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes[J]. J Biol Chem, 2010, 285(7):4920-4930.
63
Zhu H, Yang Y, Wang Y, et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1[J]. Cardiovasc Res, 2011, 92(1):75-84.
64
Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18(12):1355-1365.
65
Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction[J]. J Biol Chem, 2019, 294(31):11665-11674.
66
Zhang DY, Wang BJ, Ma M, et al. Correction to: MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice[J]. BMC Mol Biol, 2019, 20(1):17.
67
Zheng HF, Sun J, Zou ZY, et al. MiRNA-488-3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791[J]. Eur Rev Med Pharmacol Sci, 2019, 23(11):4932-4939.
68
Yu Y, Liu H, Yang D, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression[J]. Pharmacol Res, 2019, 146:104315.
69
Nah J, Fernandez AF, Kitsis RN, et al. Does Autophagy Mediate Cardiac Myocyte Death During Stress?[J]. Circ Res, 2016, 119(8):893-895.
70
Liu J, Jiang M, Deng S, et al. miR-93-5p-Containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage[J]. Mol Ther Nucleic Acids, 2018, 11:103-115.
71
Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med (Berl), 2016, 94(6):711-724.
72
Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018, 2018:3290372.
73
Youn SW, Li Y, Kim YM, et al. Modification of cardiac progenitor cell-derived exosomes by mir-322 provides protection against myocardial infarction through Nox2-Dependent angiogenesis[J]. Antioxidants (Basel), 2019, 8(1). pii: E18.
74
Wei Z, Qiao S, Zhao J, et al. miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury[J]. Life Sci, 2019, (232):116632.
75
Wang W, Zheng Y, Wang M, et al. Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1[J]. Gene, 2019, (690):75-80.
76
Yang L, Wang B, Zhou Q, et al. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7[J]. Cell Death Dis, 2018, 9(7):769.
77
Bejerano T. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction[J]. Nano Lett, 2018, 18(9):5885-5891.
78
Chen P, Pan J, Zhang X, et al. The Role of MicroRNA-181a in myocardial fibrosis following myocardial infarction in a rat model[J]. Med Sci Monit, 2018, (24):4121-4127.
79
Barile L, Moccetti T, Marban E, et al. Roles of exosomes in cardioprotection[J]. Eur Heart J, 2017, 38(18):1372-1379.
80
Yang H, Qin X, Wang H, et al. An in vivo miRNA delivery system for restoring infarcted myocardium[J]. ACS Nano, 2019, 13(9):9880-9894.
81
Nguyen MA, Wyatt H, Susser L, et al. Delivery of MicroRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo[J]. ACS Nano, 2019, 13(6):6491-6505.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[4] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[5] 张忆雪, 陈漠水, 张福伟, 郑颖, 孙定军, 叶青妃. 贝那普利通过下调心锚重复蛋白改善心肌梗死后心肌重塑[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 292-299.
[6] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[7] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[8] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[9] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[10] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[14] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[15] 杨沭, 郦明芳, 陈明龙. 左心室血栓的研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(03): 188-192.
阅读次数
全文


摘要