1 |
Anderson JL, Morrow DA. Acute Myocardial Infarction[J]. N Engl J Med, 2017, 376(21):2053-2064.
|
2 |
Humphreys DT, Westman BJ, Martin DI, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function[J]. Proc Natl Acad Sci U S A, 2005, 102(47):16961-16966.
|
3 |
Boeddinghaus J, Nestelberger T, Twerenbold R, et al. High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction[J]. Clin Chem, 2019, 65(7):893-904.
|
4 |
Malik ZA, Kott KS, Poe AJ, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics[J]. Am J Physiol Heart Circ Physiol, 2013, 304(7):954-965.
|
5 |
Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage[J]. Circ Cardiovasc Genet, 2011, 4(4):446-454.
|
6 |
Zhao X, Jia Y, Chen H, et al. Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury[J]. Exp Ther Med, 2019, 18(1):179-187.
|
7 |
Wang Y, Chang W, Zhang Y, et al. Circulating miR-22-5p and miR- 122- 5p are promising novel biomarkers for diagnosis of acute myocardial infarction[J]. J Cell Physiol, 2019, 234(4):4778-4786.
|
8 |
Zhu J, Yao K, Wang Q, et al. Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 40(6):1591-1602.
|
9 |
Li H, Zhang P, Li F, et al. Plasma miR-22-5p, miR-132-5p, and miR- 150-3p are associated with acute myocardial infarction[J]. Biomed Res Int, 2019, (2019):5012648.
|
10 |
Xue S, Zhu W, Liu D, et al. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction[J]. Mol Med, 2019, 25(1): 18.
|
11 |
Xue S, Liu D, Zhu W, et al. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction[J]. Front Physiol, 2019, (10):123.
|
12 |
Lin X, Zhang S, Huo Z. Serum circulating miR-150 is a predictor of post-acute myocardial infarction heart failure[J]. Int Heart J, 2019, 60(2):280-286.
|
13 |
Gholikhani-Darbroud R, Khaki-Khatibi F, Mansouri F, et al. Decreased circulatory microRNA-4478 as a specific biomarker for diagnosing non-ST-segment elevation myocardial infarction (NSTEMI) and its association with soluble leptin receptor[J]. Bratisl Lek Listy, 2017, 118(11):684-690.
|
14 |
Yang S, Fu C, Xu R, et al. Serum microRNA-302b: the novel biomarker for diagnosis of acute myocardial infarction[J]. Br J Biomed Sci, 2017, 74(4):214-216.
|
15 |
Yuan L, Liu X, Chen F, et al. Diagnostic and prognostic value of circulating microrna-133a in patients with acute myocardial infarction[J]. Clin Lab, 2016, 62(7):1233-1241.
|
16 |
Liu X, Yuan L, Chen F, et al. Circulating miR-208b: a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction[J]. Clin Lab, 2017, 63(1):101-109.
|
17 |
Coskunpinar E, Cakmak HA, Kalkan AK, et al. Circulating miR- 221- 3p as a novel marker for early prediction of acute myocardial infarction[J]. Gene, 2016, 591(1):90-96.
|
18 |
Aurora AB, Mahmoud AI, Luo X, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death[J]. J Clin Invest, 2012, 122(4):1222-1232.
|
19 |
Qian L, Van Laake LW, Huang Y, et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J]. J Exp Med, 2011, 208(3):549-560.
|
20 |
Yuan J, Chen H, Ge D, et al. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting smad7[J]. Cell Physiol Biochem, 2017, 42(6):2207-2219.
|
21 |
Long B, Gan TY, Zhang RC, et al. miR-23a regulates cardiomyocyte apoptosis by targeting manganese superoxide dismutase[J]. Mol Cells, 2017, 40(8):542-549.
|
22 |
Rogg EM, Abplanalp WT, Bischof C, et al. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action[J]. Circulation, 2018, 138(22):2545-2558.
|
23 |
Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR- 125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics, 2018, 8(22):6163-6177.
|
24 |
Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b[J]. Circ Res, 2018, 123(5):564-578.
|
25 |
Bayoumi AS, Park KM, Wang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes[J]. J Mol Cell Cardiol, 2018, (114):72-82.
|
26 |
Katare R, Riu F, Mitchell K, et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132[J]. Circ Res, 2011, 109(8):894-906.
|
27 |
Wang X, Yu Y. MiR-146b protect against sepsis induced mice myocardial injury through inhibition of Notch1[J]. J Mol Histol, 2018, 49(4):411-417.
|
28 |
Li Z, Song Y, Liu L, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J]. Cell Death Differ, 2017, 24(7):1205-1213.
|
29 |
Shi Y, Han Y, Niu L, et al. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6[J]. Biotechnol Lett, 2019, 41(6-7):837-847.
|
30 |
Chen H, Lou L, Zhang D, et al. Qiliqiangxin Capsule Improves Cardiac Function and Attenuates Cardiac Remodeling by Upregulating miR-133a after Myocardial Infarction in Rats[J]. Evid Based Complement Alternat Med, 2019, (2019):7528214.
|
31 |
Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death[J]. J Mol Cell Cardiol, 2010, 49(5):841-850.
|
32 |
He S, Liu P, Jian Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway[J]. Biochem Biophys Res Commun, 2013, 441(4):763-769.
|
33 |
Chen PJ, Shang AQ, Yang JP, et al. microRNA-874 inhibition targeting STAT3 protects the heart from ischemia-reperfusion injury by attenuating cardiomyocyte apoptosis in a mouse model[J]. J Cell Physiol, 2019, 234(5):6182-6193.
|
34 |
Park H, Park H, Mun D, et al. Extracellular vesicles derived from hypoxic human mesenchymal stem cells attenuate GSK3beta expression via miRNA-26a in an ischemia-reperfusion injury model[J]. Yonsei Med J, 2018, 59(6):736-745.
|
35 |
Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8):1659-1670.
|
36 |
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol, 2015, (182):349-360.
|
37 |
Li H, Liu Q, Wang N, et al. Transplantation of endothelial progenitor cells overexpressing miR-126-3p improves heart function in ischemic cardiomyopathy[J]. Circ J, 2018, 82(9):2332-2341.
|
38 |
Xiao J, Pan Y, Li XH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J]. Cell Death Dis, 2016, 7(6):e2277.
|
39 |
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-Overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
|
40 |
Yin Y, Lv L, Wang W. Expression of miRNA-214 in the sera of elderly patients with acute myocardial infarction and its effect on cardiomyocyte apoptosis[J]. Exp Ther Med, 2019, 17(6):4657-4662.
|
41 |
Zhou C, Cui Q, Su G, et al. MicroRNA-208b alleviates post-infarction myocardial fibrosis in a rat model by inhibiting GATA4[J]. Med Sci Monit, 2016, (22):1808-1816.
|
42 |
Hu X, Chen P, Wu Y, et al. MiR-211/STAT5A Signaling modulates migration of mesenchymal stem cells to improve its therapeutic efficacy[J]. Stem Cells, 2016, 34(7):1846-1858.
|
43 |
Zhang Y, Lei W, Yan W, et al. microRNA-206 is involved in survival of hypoxia preconditioned mesenchymal stem cells through targeting Pim-1 kinase[J]. Stem Cell Res Ther, 2016, 7(1):61.
|
44 |
Bayoumi AS, Teoh JP, Aonuma T, et al. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition[J]. Cardiovasc Res, 2017, 113(13):1603-1614.
|
45 |
Song CL, Liu B, Diao HY, et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1[J]. Oncotarget, 2016, 7(26):39740-39757.
|
46 |
Yuan L, Fan L, Li Q, et al. Inhibition of miR-181b-5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3[J]. J Cell Biochem, 2019, 120(12):19647-19659.
|
47 |
Pan H, Zhu L. Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22[J]. Biomed Pharmacother, 2018, 106:225-231.
|
48 |
Frank D, Gantenberg J, Boomgaarden I, et al. MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3[J]. J Mol Cell Cardiol, 2012, 52(3):711-717.
|
49 |
Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009, 119(17):2357-2366.
|
50 |
Li J, Li Y, Jiao J, et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis[J]. Mol Cell Biol, 2014, 34(10):1788-1799.
|
51 |
Hinkel R, Penzkofer D, Zuhlke S, et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model[J]. Circulation, 2013, 128(10):1066-1075.
|
52 |
Wang L, Huang H, Fan Y, et al. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway[J]. Oxid Med Cell Longev, 2014, (2014):960362.
|
53 |
Huang X, Huang F, Yang D, et al. Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes[J]. J Cell Mol Med, 2012, 16(11):2637-2646.
|
54 |
Li X, Kong M, Jiang D, et al. MicroRNA-150 aggravates H2O2-induced cardiac myocyte injury by down-regulating c-myb gene[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45(9):734-741.
|
55 |
Garikipati VN, Krishnamurthy P, Verma SK, et al. Negative regulation of miR-375 by interleukin-10 enhances bone marrow-derived progenitor cell-mediated myocardial repair and function after myocardial infarction[J]. Stem Cells, 2015, 33(12):3519-3529.
|
56 |
Hullinger TG, Montgomery RL, Seto AG, et al. Inhibition of miR-15 protects against cardiac ischemic injury[J]. Circ Res, 2012, 110(1):71-81.
|
57 |
Zhao D, Li C, Yan H, et al. Cardiomyocyte derived miR-328 promotes cardiac fibrosis by paracrinely regulating adjacent fibroblasts[J]. Cell Physiol Biochem, 2018, 46(4):1555-1565.
|
58 |
Sun C, Liu H, Guo J, et al. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3[J]. Sci Rep, 2017, 7(1):7460.
|
59 |
Fan F, Sun A, Zhao H, et al. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2[J]. Curr Pharm Des, 2013, 19(27):4865-4873.
|
60 |
Hao YL, Fang HC, Zhao HL, et al. The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway[J]. Am J Physiol Cell Physiol, 2018, 315(3):C380-C388.
|
61 |
Nie L, Zhao YN, Luo HY, et al. MiR-20 regulates myocardiac ischemia by targeting KATP subunit Kir6.1[J]. J Huazhong Univ Sci Technolog Med Sci, 2017, 37(4):486-490.
|
62 |
Nishi H, Ono K, Iwanaga Y, et al. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes[J]. J Biol Chem, 2010, 285(7):4920-4930.
|
63 |
Zhu H, Yang Y, Wang Y, et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1[J]. Cardiovasc Res, 2011, 92(1):75-84.
|
64 |
Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18(12):1355-1365.
|
65 |
Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction[J]. J Biol Chem, 2019, 294(31):11665-11674.
|
66 |
Zhang DY, Wang BJ, Ma M, et al. Correction to: MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice[J]. BMC Mol Biol, 2019, 20(1):17.
|
67 |
Zheng HF, Sun J, Zou ZY, et al. MiRNA-488-3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791[J]. Eur Rev Med Pharmacol Sci, 2019, 23(11):4932-4939.
|
68 |
Yu Y, Liu H, Yang D, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression[J]. Pharmacol Res, 2019, 146:104315.
|
69 |
Nah J, Fernandez AF, Kitsis RN, et al. Does Autophagy Mediate Cardiac Myocyte Death During Stress?[J]. Circ Res, 2016, 119(8):893-895.
|
70 |
Liu J, Jiang M, Deng S, et al. miR-93-5p-Containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage[J]. Mol Ther Nucleic Acids, 2018, 11:103-115.
|
71 |
Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med (Berl), 2016, 94(6):711-724.
|
72 |
Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018, 2018:3290372.
|
73 |
Youn SW, Li Y, Kim YM, et al. Modification of cardiac progenitor cell-derived exosomes by mir-322 provides protection against myocardial infarction through Nox2-Dependent angiogenesis[J]. Antioxidants (Basel), 2019, 8(1). pii: E18.
|
74 |
Wei Z, Qiao S, Zhao J, et al. miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury[J]. Life Sci, 2019, (232):116632.
|
75 |
Wang W, Zheng Y, Wang M, et al. Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1[J]. Gene, 2019, (690):75-80.
|
76 |
Yang L, Wang B, Zhou Q, et al. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7[J]. Cell Death Dis, 2018, 9(7):769.
|
77 |
Bejerano T. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction[J]. Nano Lett, 2018, 18(9):5885-5891.
|
78 |
Chen P, Pan J, Zhang X, et al. The Role of MicroRNA-181a in myocardial fibrosis following myocardial infarction in a rat model[J]. Med Sci Monit, 2018, (24):4121-4127.
|
79 |
Barile L, Moccetti T, Marban E, et al. Roles of exosomes in cardioprotection[J]. Eur Heart J, 2017, 38(18):1372-1379.
|
80 |
Yang H, Qin X, Wang H, et al. An in vivo miRNA delivery system for restoring infarcted myocardium[J]. ACS Nano, 2019, 13(9):9880-9894.
|
81 |
Nguyen MA, Wyatt H, Susser L, et al. Delivery of MicroRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo[J]. ACS Nano, 2019, 13(6):6491-6505.
|