切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 314 -318. doi: 10.3877/cma.j.issn.2095-1221.2019.05.010

所属专题: 文献

综述

自噬细胞在肾脏移植中的研究进展
雷迪1, 郑楠薪1, 隋明星1,()   
  1. 1. 200003,上海长征医院器官移植科
  • 收稿日期:2019-06-18 出版日期:2019-10-01
  • 通信作者: 隋明星

Advances in research of autophagic cells in kidney transplantation

Di Lei1, Nanxin Zheng1, Mingxing Sui1,()   

  1. 1. Organ Transplantation, Shanghai Changzheng Hospital, Shanghai 200003, China
  • Received:2019-06-18 Published:2019-10-01
  • Corresponding author: Mingxing Sui
  • About author:
    Corresponding author:Sui Mingxing, Email:
引用本文:

雷迪, 郑楠薪, 隋明星. 自噬细胞在肾脏移植中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(05): 314-318.

Di Lei, Nanxin Zheng, Mingxing Sui. Advances in research of autophagic cells in kidney transplantation[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(05): 314-318.

在受到缺血、毒性或免疫性损伤后,肾脏细胞必须适应其周围环境并维持必要的代谢,才能避免细胞死亡。在这个适应过程中,自噬可以综合协调胞内和细胞外的众多触发机制(营养或者免疫刺激),从而调节细胞活力、先天性和获得性免疫功能。本综述整理最近在肾脏移植领域发表的与自噬相关文献,以探讨未来的研究方向。

After being subject to ischemic, toxic or immunological damage, kidney cells must adapt to their surroundings and maintain the necessary metabolism to avoid cell death. In this adaptation process, autophagy can coordinate multiple intracellular and extracellular triggering mechanisms (nutritive or immune stimulation) to regulate cell viability, innate and acquired immune function. The purpose of this paper is to review recent literature on autophagy published in the field of kidney transplantation to explore future research directions.

[1]
Bhattacharya A, Eissa NT. Autophagy and autoimmunity crosstalks[J]. Front Immunol, 2013, 4:88.
[2]
Sureshbabu A, Patino E, Ma KC, et al. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction[J]. JCI Insight, 2018, 3(11). pii: 98411
[3]
Chao X, Ni HM, Ding WX. Insufficient autophagy: a novel autophagic flux scenario uncovered by impaired liver TFEB-mediated lysosomal biogenesis from chronic alcohol-drinking mice[J]. Autophagy, 2018, 14(9):1646-1648.
[4]
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40(2):280-293.
[5]
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330):323-335.
[6]
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4):728-741.
[7]
Mizushima N, Yoshimori T, Ohsumi Y. The Role of Atg Proteins in Autophagosome Formation[J]. Annu Rev Cell Dev Biol, 2011, 27:107-132.
[8]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet, 2009, 43:67-93.
[9]
Shen S, Kepp O, Michaud M, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study[J]. Oncogene, 2011, 30(45):4544-4556.
[10]
Rubinstein AD, Kimchi A. Life in the balance-a mechanistic view of the crosstalk between autophagy and apoptosis[J]. J Cell Sci, 2012, 125(Pt 22):5259-5268.
[11]
Gentle IE. Supramolecular complexes in cell death and inflammation and their regulation by autophagy[J]. Front Cell Dev Biol, 2019, 7: 73.
[12]
Shen HM, Codogno P. Autophagic cell death Loch Ness monster or endangered species?[J]. Autophagy, 2011, 7(5):457-465.
[13]
Shen SS, Kepp O, Kroemer G. The end of autophagic cell death?[J]. Autophagy, 2012, 8(1):1-3.
[14]
Wu X, Won H, Rubinsztein DC. Autophagy and mammalian development[J]. Biochem Soc Trans, 2013, 41(6):1489-1494.
[15]
Choi AM, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(7):651-662.
[16]
Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging[J]. Autophagy, 2012, 8(7):1009-1031.
[17]
Jiang M, Liu K, Luo J, et al. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury[J]. Am J Pathol, 2010, 176(3):1181-1192.
[18]
Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol, 2011, 22(5):902-913.
[19]
Liu S, Hartleben B, Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury[J]. Autophagy, 2012, 8(5):826-837.
[20]
Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury[J]. Kidney Int, 2012, 82(12):1271-1283.
[21]
Sirois I, Groleau J, Pallet N, et al. Caspase activation regulates the extracellular export of autophagic vacuoles[J]. Autophagy, 2012, 8(6):927-937.
[22]
Pallet N, Sirois I, Bell C, et al. A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells[J]. Proteomics, 2013, 13(7):1108-1120.
[23]
Lieberthal W, Fuhro R, Andry CC, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells[J]. Am J Physiol Renal Physiol, 2001, 281(4):F693-693.
[24]
McTaggart RA, Gottlieb D, Brooks J, et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation[J]. Am J Transplant, 2003, 3(4):416-423.
[25]
Nakagawa S, Nishihara K, Inui K, et al. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury[J]. Eur J Pharmacol, 2012, 696(1-3):143-154.
[26]
Pallet N, Bouvier N, Bendjallabah A, et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death[J]. Ame J Transplant, 2008, 8(11):2283-2296.
[27]
Zhang KZ, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum[J]. J Biol Chem, 2004, 279(25):25935-25938.
[28]
Ding WX, Ni HM, Gao W, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability[J]. Am J Pathol, 2007, 171(2):513-524.
[29]
Pallet N, Bouvier N, Legendre C, et al. Autophagy protects renal tubular cells against cyclosporine toxicity[J]. Autophagy, 2008, 4(6):783-791.
[30]
Lim SW, Hyoung BJ, Piao SG, et al. Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance[J]. Transplantation, 2012, 94(3):218-225.
[31]
Pallet N, Legendre C. Adverse events associated with mTOR inhibitors[J]. Expert Opin Drug Saf, 2013, 12(2):177-186.
[32]
Gödel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice[J]. J Clin Invest, 2011, 121(6):2197-2209.
[33]
Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest, 2010, 120(4):1084-1096.
[34]
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism[J]. Immunity, 2010, 33(3):301-311.
[35]
Saeemann MD, Haidinger M, Hecking M, et al. The multifunctional role of mTOR in innate immunity: implications for transplant immunity[J]. Am J Transplant, 2009, 9(12):2655-2661.
[36]
Tanemura M, Ohmura Y, Deguchi T, et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo[J]. Am J Transplant, 2012, 12(1):102-114.
[37]
Sumpter R Jr, Levine B. Autophagy and innate immunity: Triggering, targeting and tuning[J]. Semin Cell Dev Biol, 2010, 21(7):699-711.
[38]
Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex classⅡmolecules continuously receive input from autophagosomes[J]. Immunity, 2007, 26(1):79-92.
[39]
Luenemann JD, Muenz C. Autophagy in CD4(+) T-cell immunity and tolerance[J]. Cell Death Differ, 2009, 16(1):79-86.
[40]
Muenz C. Enhancing immunity through autophagy[J]. Annu Rev Immunol, 2009, 27:423-449.
[41]
Fougeray S, Mami I, Bertho G, et al. Tryptophan depletion and the kinase GCN2 mediate IFN-γ-induced autophagy[J]. J Immunol, 2012, 189(6):2954-2964.
[42]
Hidalgo LG, Halloran PF. Role of IFN-gamma in allograft rejection[J]. Crit Rev Immunol, 2002, 22(4):317-349.
[43]
Verghese DA, Yadav A, Bizargity P, et al. Costimulatory Blockade-Induced allograft survival requires Beclin1[J]. Am J Transplant, 2014, 14(3):545-553.
[44]
Kim BH, Shenoy AR, Kumar P, et al. A family of IFN-gamma-Inducible 65-kD GTPases protects against bacterial infection[J]. Science, 2011, 332(630):717-721.
[45]
Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1 beta production by targeting ubiquitinated inflammasomes for destruction[J]. Nat Immunol, 2012, 13(3): 255-263.
[46]
Tominello TR, Oliveira ERA, Hussain SS, et al. Emerging roles of autophagy and inflammasome in ehrlichiosis[J]. Front immunol, 2019, 10:1011.
[47]
Liangjiao C, Yiyuan K, Hongbing G, et al. The current understanding of immunotoxicity induced by silica nanoparticles[J]. Nanomedicine (Lond), 2019, 14(10):1227-1229.
[48]
Collins GA, Goldberg AL. The Logic of the 26S Proteasome[J]. Cell, 2017, 169(5):792-806.
[49]
Zhou XJ, Verginis P, Martinez J, et al. Editorial: autophagy in autoimmunity[J]. Front Immunol, 2019, 10:301.
[50]
Rao L, Eissa NT. Autophagy in pulmonary innate immunity[J]. J Innate Immun, 2019, 24:1-10.
[51]
Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-Dependent anticancer immune responses induced by chemotherapeutic agents in mice[J]. Science, 2011, 334(6062):1573-1577.
[52]
Caron E, Vincent K, Fortier MH, et al. The MHCⅠ immunopeptidome conveys to the cell surface an integrative view of cellular regulation[J]. Mol Syst Biol, 2011, 7:533.
[53]
Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues[J]. Gastroenterology, 2012, 142(4): 938-946.
[54]
Martinet W, Schrijvers DM, Timmermans J, et al. Immunohistochemical analysis of macroautophagy recommendations and limitations[J]. Autophagy, 2013, 9(3):386-402.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[3] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[4] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[7] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[8] 周正阳, 陈凯, 仇多良, 邵乐宁, 吴浩荣, 钟丰云. 腹腔镜腹股沟疝修补术后出血原因分析及处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 660-664.
[9] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[10] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[11] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?