切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 314 -318. doi: 10.3877/cma.j.issn.2095-1221.2019.05.010

所属专题: 文献

综述

自噬细胞在肾脏移植中的研究进展
雷迪1, 郑楠薪1, 隋明星1,()   
  1. 1. 200003,上海长征医院器官移植科
  • 收稿日期:2019-06-18 出版日期:2019-10-01
  • 通信作者: 隋明星

Advances in research of autophagic cells in kidney transplantation

Di Lei1, Nanxin Zheng1, Mingxing Sui1,()   

  1. 1. Organ Transplantation, Shanghai Changzheng Hospital, Shanghai 200003, China
  • Received:2019-06-18 Published:2019-10-01
  • Corresponding author: Mingxing Sui
  • About author:
    Corresponding author:Sui Mingxing, Email:
引用本文:

雷迪, 郑楠薪, 隋明星. 自噬细胞在肾脏移植中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(05): 314-318.

Di Lei, Nanxin Zheng, Mingxing Sui. Advances in research of autophagic cells in kidney transplantation[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(05): 314-318.

在受到缺血、毒性或免疫性损伤后,肾脏细胞必须适应其周围环境并维持必要的代谢,才能避免细胞死亡。在这个适应过程中,自噬可以综合协调胞内和细胞外的众多触发机制(营养或者免疫刺激),从而调节细胞活力、先天性和获得性免疫功能。本综述整理最近在肾脏移植领域发表的与自噬相关文献,以探讨未来的研究方向。

After being subject to ischemic, toxic or immunological damage, kidney cells must adapt to their surroundings and maintain the necessary metabolism to avoid cell death. In this adaptation process, autophagy can coordinate multiple intracellular and extracellular triggering mechanisms (nutritive or immune stimulation) to regulate cell viability, innate and acquired immune function. The purpose of this paper is to review recent literature on autophagy published in the field of kidney transplantation to explore future research directions.

[1]
Bhattacharya A, Eissa NT. Autophagy and autoimmunity crosstalks[J]. Front Immunol, 2013, 4:88.
[2]
Sureshbabu A, Patino E, Ma KC, et al. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction[J]. JCI Insight, 2018, 3(11). pii: 98411
[3]
Chao X, Ni HM, Ding WX. Insufficient autophagy: a novel autophagic flux scenario uncovered by impaired liver TFEB-mediated lysosomal biogenesis from chronic alcohol-drinking mice[J]. Autophagy, 2018, 14(9):1646-1648.
[4]
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40(2):280-293.
[5]
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330):323-335.
[6]
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4):728-741.
[7]
Mizushima N, Yoshimori T, Ohsumi Y. The Role of Atg Proteins in Autophagosome Formation[J]. Annu Rev Cell Dev Biol, 2011, 27:107-132.
[8]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet, 2009, 43:67-93.
[9]
Shen S, Kepp O, Michaud M, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study[J]. Oncogene, 2011, 30(45):4544-4556.
[10]
Rubinstein AD, Kimchi A. Life in the balance-a mechanistic view of the crosstalk between autophagy and apoptosis[J]. J Cell Sci, 2012, 125(Pt 22):5259-5268.
[11]
Gentle IE. Supramolecular complexes in cell death and inflammation and their regulation by autophagy[J]. Front Cell Dev Biol, 2019, 7: 73.
[12]
Shen HM, Codogno P. Autophagic cell death Loch Ness monster or endangered species?[J]. Autophagy, 2011, 7(5):457-465.
[13]
Shen SS, Kepp O, Kroemer G. The end of autophagic cell death?[J]. Autophagy, 2012, 8(1):1-3.
[14]
Wu X, Won H, Rubinsztein DC. Autophagy and mammalian development[J]. Biochem Soc Trans, 2013, 41(6):1489-1494.
[15]
Choi AM, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(7):651-662.
[16]
Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging[J]. Autophagy, 2012, 8(7):1009-1031.
[17]
Jiang M, Liu K, Luo J, et al. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury[J]. Am J Pathol, 2010, 176(3):1181-1192.
[18]
Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol, 2011, 22(5):902-913.
[19]
Liu S, Hartleben B, Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury[J]. Autophagy, 2012, 8(5):826-837.
[20]
Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury[J]. Kidney Int, 2012, 82(12):1271-1283.
[21]
Sirois I, Groleau J, Pallet N, et al. Caspase activation regulates the extracellular export of autophagic vacuoles[J]. Autophagy, 2012, 8(6):927-937.
[22]
Pallet N, Sirois I, Bell C, et al. A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells[J]. Proteomics, 2013, 13(7):1108-1120.
[23]
Lieberthal W, Fuhro R, Andry CC, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells[J]. Am J Physiol Renal Physiol, 2001, 281(4):F693-693.
[24]
McTaggart RA, Gottlieb D, Brooks J, et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation[J]. Am J Transplant, 2003, 3(4):416-423.
[25]
Nakagawa S, Nishihara K, Inui K, et al. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury[J]. Eur J Pharmacol, 2012, 696(1-3):143-154.
[26]
Pallet N, Bouvier N, Bendjallabah A, et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death[J]. Ame J Transplant, 2008, 8(11):2283-2296.
[27]
Zhang KZ, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum[J]. J Biol Chem, 2004, 279(25):25935-25938.
[28]
Ding WX, Ni HM, Gao W, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability[J]. Am J Pathol, 2007, 171(2):513-524.
[29]
Pallet N, Bouvier N, Legendre C, et al. Autophagy protects renal tubular cells against cyclosporine toxicity[J]. Autophagy, 2008, 4(6):783-791.
[30]
Lim SW, Hyoung BJ, Piao SG, et al. Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance[J]. Transplantation, 2012, 94(3):218-225.
[31]
Pallet N, Legendre C. Adverse events associated with mTOR inhibitors[J]. Expert Opin Drug Saf, 2013, 12(2):177-186.
[32]
Gödel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice[J]. J Clin Invest, 2011, 121(6):2197-2209.
[33]
Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest, 2010, 120(4):1084-1096.
[34]
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism[J]. Immunity, 2010, 33(3):301-311.
[35]
Saeemann MD, Haidinger M, Hecking M, et al. The multifunctional role of mTOR in innate immunity: implications for transplant immunity[J]. Am J Transplant, 2009, 9(12):2655-2661.
[36]
Tanemura M, Ohmura Y, Deguchi T, et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo[J]. Am J Transplant, 2012, 12(1):102-114.
[37]
Sumpter R Jr, Levine B. Autophagy and innate immunity: Triggering, targeting and tuning[J]. Semin Cell Dev Biol, 2010, 21(7):699-711.
[38]
Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex classⅡmolecules continuously receive input from autophagosomes[J]. Immunity, 2007, 26(1):79-92.
[39]
Luenemann JD, Muenz C. Autophagy in CD4(+) T-cell immunity and tolerance[J]. Cell Death Differ, 2009, 16(1):79-86.
[40]
Muenz C. Enhancing immunity through autophagy[J]. Annu Rev Immunol, 2009, 27:423-449.
[41]
Fougeray S, Mami I, Bertho G, et al. Tryptophan depletion and the kinase GCN2 mediate IFN-γ-induced autophagy[J]. J Immunol, 2012, 189(6):2954-2964.
[42]
Hidalgo LG, Halloran PF. Role of IFN-gamma in allograft rejection[J]. Crit Rev Immunol, 2002, 22(4):317-349.
[43]
Verghese DA, Yadav A, Bizargity P, et al. Costimulatory Blockade-Induced allograft survival requires Beclin1[J]. Am J Transplant, 2014, 14(3):545-553.
[44]
Kim BH, Shenoy AR, Kumar P, et al. A family of IFN-gamma-Inducible 65-kD GTPases protects against bacterial infection[J]. Science, 2011, 332(630):717-721.
[45]
Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1 beta production by targeting ubiquitinated inflammasomes for destruction[J]. Nat Immunol, 2012, 13(3): 255-263.
[46]
Tominello TR, Oliveira ERA, Hussain SS, et al. Emerging roles of autophagy and inflammasome in ehrlichiosis[J]. Front immunol, 2019, 10:1011.
[47]
Liangjiao C, Yiyuan K, Hongbing G, et al. The current understanding of immunotoxicity induced by silica nanoparticles[J]. Nanomedicine (Lond), 2019, 14(10):1227-1229.
[48]
Collins GA, Goldberg AL. The Logic of the 26S Proteasome[J]. Cell, 2017, 169(5):792-806.
[49]
Zhou XJ, Verginis P, Martinez J, et al. Editorial: autophagy in autoimmunity[J]. Front Immunol, 2019, 10:301.
[50]
Rao L, Eissa NT. Autophagy in pulmonary innate immunity[J]. J Innate Immun, 2019, 24:1-10.
[51]
Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-Dependent anticancer immune responses induced by chemotherapeutic agents in mice[J]. Science, 2011, 334(6062):1573-1577.
[52]
Caron E, Vincent K, Fortier MH, et al. The MHCⅠ immunopeptidome conveys to the cell surface an integrative view of cellular regulation[J]. Mol Syst Biol, 2011, 7:533.
[53]
Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues[J]. Gastroenterology, 2012, 142(4): 938-946.
[54]
Martinet W, Schrijvers DM, Timmermans J, et al. Immunohistochemical analysis of macroautophagy recommendations and limitations[J]. Autophagy, 2013, 9(3):386-402.
[1] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[4] 岳志浩, 王晶, 闫子玉, 葛娜, 许向亮, 单小峰, 崔念晖. 牙槽外科相关舌神经损伤早期诊断及治疗中磁共振神经成像技术的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 413-417.
[5] 何毅, 余东升. 年轻恒牙脱位性损伤的诊疗进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 400-406.
[6] 吴家顺, 孙伟, 曾国忠, 申仪, 郑广森, 唐海阔. 下颌第三磨牙拔除术中下牙槽神经损伤的原因、临床评估与预防[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 394-399.
[7] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[8] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[9] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[10] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[11] 尚培中, 张润萍, 张伟, 贾国洪, 李晓武, 苗建军, 刘冰. 梗阻性黄疸临床防治新技术单中心应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 104-107.
[12] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[13] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要