切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 251 -256. doi: 10.3877/cma.j.issn.2095-1221.2019.04.011

所属专题: 文献

综述

干细胞来源的胞外囊泡对T细胞的免疫调控作用
谢敏1, 佘周1, 温在驰1, Amin Sheikh Abdirahman1, 文川1,(), 万伍卿1   
  1. 1. 410011 长沙,中南大学湘雅二医院儿童医学中心血液专科
  • 收稿日期:2019-06-24 出版日期:2019-08-01
  • 通信作者: 文川
  • 基金资助:
    湖南省自然科学基金面上项目(2019JJ40413)

Regulatory effects of stem cell-derived extracellular vesicles on T-lymphocytes

Min Xie1, Zhou She1, Zaichi Wen1, Amin Sheikh Abdirahman1, Chuan Wen1,(), Wuqing Wan1   

  1. 1. Division of Hematology and Tumor, Children's Medical Center, the Second Xiangya Hospital, Central South University, Changsha 410011, China
  • Received:2019-06-24 Published:2019-08-01
  • Corresponding author: Chuan Wen
  • About author:
    Corresponding author: Wen chuan, Email:
引用本文:

谢敏, 佘周, 温在驰, Amin Sheikh Abdirahman, 文川, 万伍卿. 干细胞来源的胞外囊泡对T细胞的免疫调控作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 251-256.

Min Xie, Zhou She, Zaichi Wen, Amin Sheikh Abdirahman, Chuan Wen, Wuqing Wan. Regulatory effects of stem cell-derived extracellular vesicles on T-lymphocytes[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(04): 251-256.

胞外囊泡(EVs)是细胞旁分泌产生的一种亚细胞成分,实质上是一组纳米级颗粒。它是双层膜结合型囊泡,内含蛋白质、核酸等活性成分。EVs在细胞间通过转移携带的信号分子而获得重要的地位。目前关于EVs在体外和体内的研究中对T细胞的调控能力引起了人们广泛的兴趣。在大多数研究中干细胞被报道能够抑制T细胞的增殖、活化和分化,在极少数研究中也发现干细胞具有增强T细胞免疫反应的作用。事实上所有的细胞类型均能释放EVs,包括干/祖/前体细胞。EVs被认为是细胞间交流的一种新机制,具有与干/祖细胞等亲代细胞相似的免疫调控作用。本综述是概述干/祖细胞来源的EVs对T细胞调控作用及可能的机制。

Extracellular vesicles (EVs) are subcellular component secreted by paracellular mechanism, which are essentially a group of nanoparticles. They are bilayer membrane bound vesicles containing proteins, nucleic acids and other active components. EVs gain significant status by the transfer of signal molecules among cells. Recent studies on the regulatory effects of EVs on T cells both in vitro and in vivo have aroused extensive interest. In most investigations, stem cells have been reported to suppress the proliferation, activation and differentiation of T cells, meanwhile, stem cells also have been found to enhance the immune response of T cells in few reports. Virtually all cell types have the ability to release EVs including stem/progenitor cells. EVs are recognized as a novel mechanism of intercellular communication, with immunoregulatory effects similar to those of parental cells such as stem/progenitor cells. The aim of this review is to summarize the possible mechanisms underlying the regulatory effects of stem/progenitor cell-derived EVs on T cells.

表1 干细胞来源的胞外囊泡对T细胞的免疫调控作用
释放EVs的干细胞类型 模型 转移物质 靶细胞
hBM-MSCs T1D患者 PGE2和TGF-β T细胞
hBM-MSCs 体外 T细胞
mAD-MSCs T1D小鼠模型 T细胞
hPDL-MSCs(LPS pretreated) 慢性牙周炎 microRNA-155-5p T细胞
hNSCs 血栓性卒中小鼠模型 巨噬细胞,T细胞
hAD-MSCs 实验性过敏性哮喘小鼠模型 T细胞
hBM-MSCs 严重的顽固性哮喘小鼠模型 T细胞
hBM-MSCs 体外 T细胞
mBM-MSCs 炎性关节炎小鼠模型 T细胞
hUC-MSCs GVHD小鼠模型 T细胞
iPSC-MSCs(Protein-free medium activated) 干燥综合征小鼠模型 APCs,T细胞
hBM-MSCs T1D患者 DCs,T细胞
hMSCs(Protein-free medium activated) T1D以及葡萄膜视网膜炎小鼠模型 DCs,T细胞
hGSCs 体外 CD14+单核细胞,T细胞
hESC-MSCs 同种异体皮肤移植物小鼠模型 TLL4 单核细胞,T细胞
mBM-MSCs 系统性硬化小鼠模型 miR-151-5p 受者BM-MSCs,Th2细胞
hBM-MSCs aGVHD小鼠模型 miR-125a-3p T细胞
hUC-MSCs 体外 CD73蛋白 T细胞
canine WJ-MSCs 体外 TGF-β和腺苷信号 T细胞
h-endMSCs 体外 TGF-β T细胞
mESC 移植的肺腺癌小鼠模型 表达GM-CSF CD8+ T细胞,Tregs细胞
rMSC 肝细胞癌大鼠模型 β-catenin NK-T细胞
hBM-MSCs 卒中大鼠、小鼠模型 T细胞,B细胞,NK细胞
mAD-SC 实验性自身免疫性脑脊髓膜炎小鼠模型 T细胞
hUC-MSC 实验性自身免疫性葡萄膜炎大鼠模型 视网膜细胞
hBM-MSC 人-鼠异种GVHD模型 腺苷信号 Th1细胞
释放EVs的干细胞类型 生物机制 生物作用 参考文献
hBM-MSCs 调控Th17/Tregs免疫反应轴 阻止疾病进展 [7]
hBM-MSCs 同[7] 诱导免疫耐受 [17]
mAD-MSCs 同[7] 阻止疾病进展 [18]
hPDL-MSCs (LPS pretreated) 靶向sirtuin-1以及调控Th17/Tregs免疫反应轴 阻止牙周炎的进一步恶化 [19]
hNSCs 同[7] 治疗作用以及改善预后 [20]
hAD-MSCs 将Th2细胞的免疫反应向Th1转变 抑制炎症和组织重塑 [21]
hBM-MSCs 将Th2/Th17细胞的免疫反应向Th1转变 减弱气道炎症 [22]
hBM-MSCs 诱导Th1的免疫反应向Th2细胞转换 调控T细胞的免疫反应 [17]
mBM-MSCs Th1细胞的免疫反应向Th2变换 治疗关节炎 [23]
hUC-MSCs 抑制细胞毒性T细胞,将Th1细胞的免疫反应向Th2转变 阻止致命的GVHD [24]
iPSC-MSCs(Protein-free medium activated) 抑制Tfh/Th17细胞分化 阻止疾病进展 [25]
hBM-MSCs 诱导DCs未成熟表型,抑制Th1/Th17细胞分化,增加Tregs细胞 诱导免疫耐受 [26]
hMSCs(Protein-free medium activated) 诱导DCs未成熟表型以及抑制Th1/Th17细胞发育 减弱炎性反应 [27]
hGSCs 转变单核细胞表型以及抑制T细胞活化、分化和增殖 诱导免疫耐受 [29]
hESC-MSCs 调控单核细胞朝向M2表型转变以及调控CD4+ T细胞向Tregs分化 促进皮肤存活 [30]
mBM-MSCs 抑制IL4Rα/ mTOR路径以及抑制Th2细胞活化和浸润 系统性硬化的治疗靶点 [31]
hBM-MSCs 保存循环初始T细胞 延长aGVHD小鼠的生存期 [35]
hUC-MSCs 抑制T细胞增殖 免疫抑制反应 [39]
canine WJ-MSCs 抑制CD4+ T细胞增殖 免疫调控作用 [42]
h-endMSCs 抑制CD4+ T细胞活化 免疫调控作用 [44]
mESC 降低瘤内Tregs,增加瘤内CD8+ T/Tregs比率,激活瘤内CD8+ CD25+、CD8+ IFN-γ+效应细胞 用于阻止肺癌的预防性疫苗 [45]
rMSC 促进NK-T细胞存活以及促进NK-T细胞向瘤内迁移 促进NK-T细胞的抗肿瘤反应以及导致低级别肿瘤分化 [46]
hBM-MSCs 削弱T细胞、B细胞、NK细胞淋巴细胞减少症 阻止缺血后的免疫抑制 [48,49]
mAD-SC 抑制整合素依赖趋化因子诱导的路径以及抑制活化的T细胞黏附 减弱慢性炎症 [50]
hUC-MSC 下调CCL21表达以及减少T细胞浸润 保护视网膜免于炎性损伤 [51]
hBM-MSC 诱导Th1细胞凋亡 促进免疫抑制 [43]
1
Shao HL, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4):1917-1950.
2
Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30:255-289.
3
Nguyen DC, Lewis HC, Joyner C, et al. Extracellular vesicles from bone marrow-derived mesenchymal stromal cells support ex vivo survival of human antibody secreting cells[J]. J Extracell Vesicles, 2018, 7(1):1463778.
4
Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J]. Nat Commun, 2015, 6:8472.
5
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196(10):1275-1286.
6
Adamo A, Brandi J, Caligola S, et al. Extracellular vesicles mediate mesenchymal stromal Cell-Dependent regulation of B cell PI3K-AKT signaling pathway and actin cytoskeleton[J]. Front Immunol, 2019, 10:446.
7
Webb RL, Kaiser EE, Scoville SL, et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model[J]. Transl Stroke Res, 2018, 9(5):530-539.
8
Kishore R, Khan M. More than tiny sacks stem cell exosomes as Cell-Free modality for cardiac repair[J]. Circ Res, 2016, 118(2):330-343.
9
Cossetti C, Iraci N, Mercer TR, et al. Extracellular vesicles from neural stem cells transfer IFN-gamma via ifngr1 to activate Stat1 signaling in target cells[J]. Mol Cell, 2014, 56(2):193-204.
10
Zhou J, Benito-Martin A, Mighty J, et al. Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins[J]. Sci Rep, 2018, 8(1):2823.
11
Gouveia de Andrade AV, Bertolino G, Riewaldt J, et al. Extracellular vesicles secreted by bone marrow-and adipose tissue-derived mesenchymal stromal cells fail to suppress lymphocyte proliferation[J]. Stem Cells Dev, 2015, 24(11):1374-1376.
12
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34(8):2210-2223.
13
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake[J]. J Extracell Vesicles, 2014, 3.
14
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4):373-383.
15
Kilpinen L, Impola U, Sankkila L, et al. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning[J]. J Extracell Vesicles, 2013, 2.
16
Zhang QY, Fu L, Liang YH, et al. Exosomes originating from MSCs stimulated with TGF- and IFN- promote Treg differentiation[J]. J Cell Physiol, 2018, 233(9):6832-6840.
17
Chen WC, Huang YK, Han JC, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4):831-840.
18
Nojehdehi S, Soudi S, Hesampour A, et al. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes[J]. J Cell Biochem, 2018, 119(11):9433-9443.
19
Zheng Y, Dong C, Yang J, et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019.
20
Favaro E, Carpanetto A, Lamorte S, et al. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes[J]. Diabetologia, 2014, 57(8):1664-1673.
21
De Castro LL, Xisto DG, Kitoko JZ, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma[J]. Stem Cell Res Ther, 2017, 8(1):151.
22
Cruz FF, Borg ZD, Goodwin MA, et al. Systemic administration of human bone Marrow-Derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal Extract-Induced allergic airway inflammation in immunocompetent mice[J]. Stem Cells Transl Med, 2015, 4(11):1302-1316.
23
Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis[J]. Theranostics, 2018, 8(5):1399-1410.
24
Wang L, Gu ZY, Zhao XL, et al. Extracellular vesicles released from human umbilical Cord-Derived mesenchymal stromal cells prevent Life-Threatening acute Graft-Versus-Host disease in a mouse model of allogeneic hematopoietic stem cell transplantation[J]. Stem Cells Dev, 2016, 25(24):1874-1883.
25
Hai B, Shigemoto-Kuroda T, Zhao Q, et al. Inhibitory effects of iPSC-MSCs and their extracellular vesicles on the onset of sialadenitis in a mouse model of sjogren's syndrome[J]. Stem Cells Int, 2018:2092315.
26
Favaro E, Carpanetto A, Caorsi CA, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients[J]. Diabetologia, 2016, 59(2):325-333.
27
Shigemoto-Kuroda T, Oh JY, Kim DK, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: Type 1 diabetes and uveoretinitis[J]. Stem Cell Reports, 2017, 8(5):1214-1225.
28
Wen D, Peng Y, Liu D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238:166-175.
29
Domenis R, Cesselli D, Toffoletto B, et al. Systemic T cells immunosuppression of glioma stem Cell-Derived exosomes is mediated by monocytic Myeloid-Derived suppressor cells[J]. PLoS One, 2017, 12(1):e0169932.
30
Zhang B, Yin Y, Lai RC, et al. Mesenchymal stem cells secrete immunologically active exosomes[J]. Stem Cells Dev, 2014, 23(11): 1233-1244.
31
Chen C, Wang D, Moshaverinia A, et al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis[J]. Cell Res, 2017, 27(4):559-577.
32
Del Fattore A, Luciano R, Pascucci L, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes[J]. Cell Transplant, 2015, 24(12):2615-2627.
33
Di Trapani M, Bassi G, Midolo M, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions[J]. Sci Rep, 2016, 6:24120.
34
Conforti A, Scarsella M, Starc N, et al. Microvescicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro[J]. Stem Cells Dev, 2014, 23(21):2591-2599.
35
Fujii S, Miura Y, Fujishiro A, et al. Graft-Versus-Host disease amelioration by human bone marrow mesenchymal stromal/stem Cell-Derived extracellular vesicles is associated with peripheral preservation of naive T cell populations[J]. Stem Cells, 2018, 36(3):434-445.
36
Zhang B, Yeo RW, Lai RC, et al. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway[J]. Cytotherapy, 2018, 20(5):687-696.
37
Du YM, Yong-Xun Z, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1):114-120.
38
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J]. Front Immunol, 2014, 5:556.
39
Kerkela E, Laitinen A, Rabina J, et al. Adenosinergic immunosuppression by human mesenchymal stromal cells requires Co-Operation with T cells[J]. Stem Cells, 2016, 34(3):781-790.
40
Monguió-Tortajada M, Roura S, Gálvez-Montón C, et al. Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells:implications for nanomedicine[J]. Theranostics, 2017, 7(2):270-284.
41
Van Den Akker F, Vrijsen KR, Deddens JC, et al. Suppression of T cells by mesenchymal and cardiac progenitor cells is partly mediated via extracellular vesicles[J]. Heliyon, 2018, 4(6):e00642.
42
Crain SK, Robinson SR, Thane KE, et al. Extracellular vesicles from wharton's jelly mesenchymal stem cells suppress CD4 expressing T cells through transforming growth factor beta and adenosine signaling in a canine model[J]. Stem Cells Dev, 2019, 28(3):212-226.
43
Amarnath S, Foley JE, Farthing DE, et al. Bone Marrow-Derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo[J]. Stem Cells, 2015, 33(4):1200-1212.
44
Alvarez V, Miguel Sanchez-Margallo FA, Gomez-Serrano M, et al. The immunomodulatory activity of extracellular vesicles derived from endometrial mesenchymal stem cells on CD4+ T cells is partially mediated by TGFbeta[J]. J Tissue Eng Regen Med, 2018, 12(10):2088-2098.
45
Ko SF, Yip HK, Zhen YY, et al. Adipose-Derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-Cell responses, and histopathological features[J]. Stem Cells Int, 2015, 2015:853506.
46
Yaddanapudi K, Meng S, Whitt AG, et al. Exosomes from GM-CSF expressing embryonic stem cells are an effective prophylactic vaccine for cancer prevention[J]. Oncoimmunology, 2019, 8(3):1561119.
47
Rahman MJ, Regn D, Bashratyan R, et al. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice[J]. Diabetes, 2014, 63(3):1008-1020.
48
Hu B, Chen S, Zou M, et al. Effect of extracellular vesicles on neural functional recovery and immunologic suppression after rat cerebral apoplexy[J]. Cell Physiol and Biochem, 2016, 40(1-2):155-162.
49
Doeppner TR, Herz J, Goergens AA, et al. Extracellular vesicles improve Post-Stroke neuroregeneration and prevent postischemic immunosuppression[J]. Stem Cells Transl Med, 2015, 4(10):1131-1143.
50
Bai L, Shao H, Wang H, et al. Effects of mesenchymal stem Cell-Derived exosomes on experimental autoimmune uveitis[J]. Sci Rep, 2017, 7(1):4323.
51
Farinazzo A, Angiari S, Turano E, et al. Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis[J]. Sci Rep, 2018, 8(1):7473.
52
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged[J]. Nat Biotechnol, 2014, 32(3):252-260.
53
Borger V, Bremer M, Ferrer-Tur R, et al. Mesenchymal stem/stromal Cell-Derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents[J]. Int J Mol Sci, 2017, 18(7).
[1] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[5] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[6] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[7] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[8] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[9] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[12] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[13] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[14] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[15] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?