1 |
Kopeikina KJ, Carlson GA, Pitstick R, et al. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain[J]. Am J Pathol, 2011, 179(4):2071-2082.
|
2 |
Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 1995, 9 Suppl 2: 23-28.
|
3 |
Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics[J]. Annu Rev Pharmacol Toxicol, 2003, 43: 545-584.
|
4 |
Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1): e0190358.
|
5 |
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics[J]. Mol Neurobiol. 2014, 49(1):590-600.
|
6 |
Ng G, Quek A, Cheung C, et al. Stroke biomarkers in clinical practice: A critical appraisal[J]. Neurochem Int, 2017, 107:11-22.
|
7 |
Alvarez ML, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers[J]. Kidney Int, 2012, 82(9):1024-1032.
|
8 |
Huang L, Ma W, Ma Y, et al. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases[J]. Int J Biol Sci, 2015, 11(2):238-245.
|
9 |
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes[J]. Sci Rep, 2016, 6:34842.
|
10 |
Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives[J]. Transl Res, 2018, 196:1-16.
|
11 |
Melentijevic I, Toth ML, Arnold ML, et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress[J]. Nature, 2017, 542(7641):367-371.
|
12 |
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013,12(5):347-357.
|
13 |
Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018,32(2):654-668.
|
14 |
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4):831-840.
|
15 |
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J]. Front Immunol, 2014, 5:556.
|
16 |
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8:72-82.
|
17 |
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018, 67(2):235-247.
|
18 |
Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem, 2012, 287(14):10977-10989.
|
19 |
Dinkins MB, Dasgupta S, Wang G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2014, 35(8):1792-1800.
|
20 |
Yuyama K, Sun H, Sakai S, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice[J]. J Biol Chem, 2014, 289(35):24488-24498.
|
21 |
Yoon SS, Jo SA. Mechanisms of Amyloid-β Peptide Clearance: potential therapeutic targets for Alzheimer's Disease[J]. Biomol Ther (Seoul), 2012, 20(3):245-255.
|
22 |
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3:1197.
|
23 |
de Godoy MA, Saraiva LM, de Carvalho L, et al. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers[J]. J Biol Chem, 2018, 293(6):1957-1975.
|
24 |
Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3):747-753.
|
25 |
Chen KH, Chen CH, Wallace CG, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke[J]. Oncotarget, 2016, 7(46):74537-74556.
|
26 |
Fathullahzadeh S, Mirzaei H, Honardoost MA, et al. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia[J]. Cancer Gene Ther, 2016, 23(10):327-332.
|
27 |
Golabchi K, Soleimani-Jelodar R, Aghadoost N, et al. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers[J]. J Cell Physiol, 2018, 233(4):3016-3023.
|
28 |
Keshavarzi M, Sorayayi S, Jafar Rezaei M, et al. MicroRNAs-based imaging techniques in cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(12):4121-4128.
|
29 |
Keshavarzi M, Darijani M, Momeni F, et al. Molecular imaging and oral cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(10): 3055-3060.
|
30 |
Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis[J]. J Cell Physiol, 2018, 233(4):2949-2965.
|
31 |
Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: Current status and future perspectives[J]. Curr Med Chem, 2016, 23(36):4135-4150.
|
32 |
Mirzaei H, Yazdi F, Salehi R, et al. SiRNA and epigenetic aberrations in ovarian cancer[J]. J Cancer Res Ther, 2016, 12(2):498-508.
|
33 |
Mohammadi M, Goodarzi M, Jaafari MR, et al. Circulating microRNA: A new candidate for diagnostic biomarker in neuroblastoma[J]. Cancer Gene Ther, 2016, 23(11):371-372.
|
34 |
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers[J]. Cancer Gene Ther, 2016, 23(12):415-418.
|
35 |
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: moving beyond current cancer therapies[J]. Curr Cancer Drug Targets, 2016, 16(9):773-788.
|
36 |
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes[J]. J Cell Biochem, 2018, 119(1):185-196.
|
37 |
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers[J]. J Cell Physiol, 2018, 233(7):5200-5213.
|
38 |
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis[J]. J Cell Biochem, 2018, 119(2):1285-1290.
|
39 |
Mirzaei H, Ferns GA, Avan A, et al. Cytokines and MicroRNA in coronary artery disease[J]. Adv Clin Chem, 2017, 82:47-70.
|
40 |
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J]. J Hematol Oncol, 2015,8:122.
|
41 |
Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing[J]. RNA, 2004, 10(3):544-550.
|
42 |
Bobbin ML, Rossi JJ. RNA interference (RNAi)-Based therapeutics: Delivering on the Promise?[J]. Annu Rev Pharmacol Toxicol, 2016, 56:103-122.
|
43 |
Chen JJ, Zhao B, Zhao J, et al. Potential roles of exosomal micrornas as diagnostic biomarkers and therapeutic application in Alzheimer's disease[J]. Neural Plast, 2017, 2017:7027380.
|
44 |
Miya Shaik M, Tamargo IA, Abubakar MB, et al. The role of microRNAs in Alzheimer's disease and their therapeutic potentials[J]. Genes (Basel), 2018, 9(4):E174.
|