切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 247 -250. doi: 10.3877/cma.j.issn.2095-1221.2019.04.010

所属专题: 文献

综述

间充质干细胞外泌体在阿尔兹海默症治疗中的研究进展
金圣榆1, 葛丽特2   
  1. 1. 410003 长沙,湖南师范大学第二附属医院(中国人民解放军联勤保障部队第921医院)神经外科 神经修复学湖南省重点实验室
    2. 410003 长沙,湖南师范大学第二附属医院(中国人民解放军联勤保障部队第921医院)神经外科 神经修复学湖南省重点实验室;410006 长沙,湖南师范大学生命科学学院动物多肽药物创制国家地方联合工程实验室
  • 收稿日期:2019-02-21 出版日期:2019-08-01
  • 基金资助:
    湖南省教育厅研究生科研创新项目(CX2018B309,CXCX2018B240)

Research progress on mesenchymal stem cell exosomes in the treatment of Alzheimer's disease

Shengyu Jin1, Lite Ge2   

  1. 1. Hunan Key Laboratory of Neurorestoratology, Department of Neurosurgery, the Second Affiliated Hospital (the 921st Hospital of PLA) , Hunan Normal University, Changsha 410003, China
    2. Hunan Key Laboratory of Neurorestoratology, Department of Neurosurgery, the Second Affiliated Hospital (the 921st Hospital of PLA) , Hunan Normal University, Changsha 410003, China; the National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
  • Received:2019-02-21 Published:2019-08-01
  • About author:
    Corresponding author:Lu ming, Email:
引用本文:

金圣榆, 葛丽特. 间充质干细胞外泌体在阿尔兹海默症治疗中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 247-250.

Shengyu Jin, Lite Ge. Research progress on mesenchymal stem cell exosomes in the treatment of Alzheimer's disease[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(04): 247-250.

阿尔兹海默症(AD)是一种病理机制复杂,以进行性认知功能障碍为主的中枢神经系统疾病,目前仍缺乏有效的治疗方法。多项研究结果显示,间充质干细胞(MSCs)外泌体能够促进抗炎、调节免疫功能、加强Aβ降解、促进神经细胞轴突生长等,能很好地针对AD的核心病理机制发挥效果从而达到治疗效果。本文主要介绍MSCs外泌体在各项AD病理机制治疗中的研究进展。

Alzheimer's disease (AD) is a kind of central nervous system disease with complex pathological mechanism and progressive cognitive dysfunction. Currently, there is still a lack of effective treatment. Some research results showed that mesenchymal stem cell exosomes could exert therapeutic effects on AD by promoting anti-inflammatory, regulating immune function, enhancing Aβ degradation, and promoting axonal growth of neurons. This article mainly introduces the research progress of mesenchymal stem cell exosomes in the treatment of Alzheimer's disease.

1
Kopeikina KJ, Carlson GA, Pitstick R, et al. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain[J]. Am J Pathol, 2011, 179(4):2071-2082.
2
Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 1995, 9 Suppl 2: 23-28.
3
Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics[J]. Annu Rev Pharmacol Toxicol, 2003, 43: 545-584.
4
Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1): e0190358.
5
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics[J]. Mol Neurobiol. 2014, 49(1):590-600.
6
Ng G, Quek A, Cheung C, et al. Stroke biomarkers in clinical practice: A critical appraisal[J]. Neurochem Int, 2017, 107:11-22.
7
Alvarez ML, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers[J]. Kidney Int, 2012, 82(9):1024-1032.
8
Huang L, Ma W, Ma Y, et al. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases[J]. Int J Biol Sci, 2015, 11(2):238-245.
9
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes[J]. Sci Rep, 2016, 6:34842.
10
Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives[J]. Transl Res, 2018, 196:1-16.
11
Melentijevic I, Toth ML, Arnold ML, et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress[J]. Nature, 2017, 542(7641):367-371.
12
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013,12(5):347-357.
13
Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018,32(2):654-668.
14
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4):831-840.
15
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J]. Front Immunol, 2014, 5:556.
16
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8:72-82.
17
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018, 67(2):235-247.
18
Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem, 2012, 287(14):10977-10989.
19
Dinkins MB, Dasgupta S, Wang G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2014, 35(8):1792-1800.
20
Yuyama K, Sun H, Sakai S, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice[J]. J Biol Chem, 2014, 289(35):24488-24498.
21
Yoon SS, Jo SA. Mechanisms of Amyloid-β Peptide Clearance: potential therapeutic targets for Alzheimer's Disease[J]. Biomol Ther (Seoul), 2012, 20(3):245-255.
22
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3:1197.
23
de Godoy MA, Saraiva LM, de Carvalho L, et al. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers[J]. J Biol Chem, 2018, 293(6):1957-1975.
24
Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3):747-753.
25
Chen KH, Chen CH, Wallace CG, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke[J]. Oncotarget, 2016, 7(46):74537-74556.
26
Fathullahzadeh S, Mirzaei H, Honardoost MA, et al. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia[J]. Cancer Gene Ther, 2016, 23(10):327-332.
27
Golabchi K, Soleimani-Jelodar R, Aghadoost N, et al. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers[J]. J Cell Physiol, 2018, 233(4):3016-3023.
28
Keshavarzi M, Sorayayi S, Jafar Rezaei M, et al. MicroRNAs-based imaging techniques in cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(12):4121-4128.
29
Keshavarzi M, Darijani M, Momeni F, et al. Molecular imaging and oral cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(10): 3055-3060.
30
Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis[J]. J Cell Physiol, 2018, 233(4):2949-2965.
31
Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: Current status and future perspectives[J]. Curr Med Chem, 2016, 23(36):4135-4150.
32
Mirzaei H, Yazdi F, Salehi R, et al. SiRNA and epigenetic aberrations in ovarian cancer[J]. J Cancer Res Ther, 2016, 12(2):498-508.
33
Mohammadi M, Goodarzi M, Jaafari MR, et al. Circulating microRNA: A new candidate for diagnostic biomarker in neuroblastoma[J]. Cancer Gene Ther, 2016, 23(11):371-372.
34
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers[J]. Cancer Gene Ther, 2016, 23(12):415-418.
35
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: moving beyond current cancer therapies[J]. Curr Cancer Drug Targets, 2016, 16(9):773-788.
36
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes[J]. J Cell Biochem, 2018, 119(1):185-196.
37
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers[J]. J Cell Physiol, 2018, 233(7):5200-5213.
38
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis[J]. J Cell Biochem, 2018, 119(2):1285-1290.
39
Mirzaei H, Ferns GA, Avan A, et al. Cytokines and MicroRNA in coronary artery disease[J]. Adv Clin Chem, 2017, 82:47-70.
40
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J]. J Hematol Oncol, 2015,8:122.
41
Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing[J]. RNA, 2004, 10(3):544-550.
42
Bobbin ML, Rossi JJ. RNA interference (RNAi)-Based therapeutics: Delivering on the Promise?[J]. Annu Rev Pharmacol Toxicol, 2016, 56:103-122.
43
Chen JJ, Zhao B, Zhao J, et al. Potential roles of exosomal micrornas as diagnostic biomarkers and therapeutic application in Alzheimer's disease[J]. Neural Plast, 2017, 2017:7027380.
44
Miya Shaik M, Tamargo IA, Abubakar MB, et al. The role of microRNAs in Alzheimer's disease and their therapeutic potentials[J]. Genes (Basel), 2018, 9(4):E174.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[6] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[7] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[14] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?