切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 247 -250. doi: 10.3877/cma.j.issn.2095-1221.2019.04.010

所属专题: 文献

综述

间充质干细胞外泌体在阿尔兹海默症治疗中的研究进展
金圣榆1, 葛丽特2   
  1. 1. 410003 长沙,湖南师范大学第二附属医院(中国人民解放军联勤保障部队第921医院)神经外科 神经修复学湖南省重点实验室
    2. 410003 长沙,湖南师范大学第二附属医院(中国人民解放军联勤保障部队第921医院)神经外科 神经修复学湖南省重点实验室;410006 长沙,湖南师范大学生命科学学院动物多肽药物创制国家地方联合工程实验室
  • 收稿日期:2019-02-21 出版日期:2019-08-01
  • 基金资助:
    湖南省教育厅研究生科研创新项目(CX2018B309,CXCX2018B240)

Research progress on mesenchymal stem cell exosomes in the treatment of Alzheimer's disease

Shengyu Jin1, Lite Ge2   

  1. 1. Hunan Key Laboratory of Neurorestoratology, Department of Neurosurgery, the Second Affiliated Hospital (the 921st Hospital of PLA) , Hunan Normal University, Changsha 410003, China
    2. Hunan Key Laboratory of Neurorestoratology, Department of Neurosurgery, the Second Affiliated Hospital (the 921st Hospital of PLA) , Hunan Normal University, Changsha 410003, China; the National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
  • Received:2019-02-21 Published:2019-08-01
  • About author:
    Corresponding author:Lu ming, Email:
引用本文:

金圣榆, 葛丽特. 间充质干细胞外泌体在阿尔兹海默症治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 247-250.

Shengyu Jin, Lite Ge. Research progress on mesenchymal stem cell exosomes in the treatment of Alzheimer's disease[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(04): 247-250.

阿尔兹海默症(AD)是一种病理机制复杂,以进行性认知功能障碍为主的中枢神经系统疾病,目前仍缺乏有效的治疗方法。多项研究结果显示,间充质干细胞(MSCs)外泌体能够促进抗炎、调节免疫功能、加强Aβ降解、促进神经细胞轴突生长等,能很好地针对AD的核心病理机制发挥效果从而达到治疗效果。本文主要介绍MSCs外泌体在各项AD病理机制治疗中的研究进展。

Alzheimer's disease (AD) is a kind of central nervous system disease with complex pathological mechanism and progressive cognitive dysfunction. Currently, there is still a lack of effective treatment. Some research results showed that mesenchymal stem cell exosomes could exert therapeutic effects on AD by promoting anti-inflammatory, regulating immune function, enhancing Aβ degradation, and promoting axonal growth of neurons. This article mainly introduces the research progress of mesenchymal stem cell exosomes in the treatment of Alzheimer's disease.

1
Kopeikina KJ, Carlson GA, Pitstick R, et al. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain[J]. Am J Pathol, 2011, 179(4):2071-2082.
2
Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 1995, 9 Suppl 2: 23-28.
3
Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics[J]. Annu Rev Pharmacol Toxicol, 2003, 43: 545-584.
4
Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1): e0190358.
5
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics[J]. Mol Neurobiol. 2014, 49(1):590-600.
6
Ng G, Quek A, Cheung C, et al. Stroke biomarkers in clinical practice: A critical appraisal[J]. Neurochem Int, 2017, 107:11-22.
7
Alvarez ML, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers[J]. Kidney Int, 2012, 82(9):1024-1032.
8
Huang L, Ma W, Ma Y, et al. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases[J]. Int J Biol Sci, 2015, 11(2):238-245.
9
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes[J]. Sci Rep, 2016, 6:34842.
10
Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives[J]. Transl Res, 2018, 196:1-16.
11
Melentijevic I, Toth ML, Arnold ML, et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress[J]. Nature, 2017, 542(7641):367-371.
12
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013,12(5):347-357.
13
Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018,32(2):654-668.
14
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J]. Immunol Res, 2016, 64(4):831-840.
15
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J]. Front Immunol, 2014, 5:556.
16
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8:72-82.
17
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018, 67(2):235-247.
18
Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem, 2012, 287(14):10977-10989.
19
Dinkins MB, Dasgupta S, Wang G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2014, 35(8):1792-1800.
20
Yuyama K, Sun H, Sakai S, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice[J]. J Biol Chem, 2014, 289(35):24488-24498.
21
Yoon SS, Jo SA. Mechanisms of Amyloid-β Peptide Clearance: potential therapeutic targets for Alzheimer's Disease[J]. Biomol Ther (Seoul), 2012, 20(3):245-255.
22
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3:1197.
23
de Godoy MA, Saraiva LM, de Carvalho L, et al. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers[J]. J Biol Chem, 2018, 293(6):1957-1975.
24
Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3):747-753.
25
Chen KH, Chen CH, Wallace CG, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke[J]. Oncotarget, 2016, 7(46):74537-74556.
26
Fathullahzadeh S, Mirzaei H, Honardoost MA, et al. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia[J]. Cancer Gene Ther, 2016, 23(10):327-332.
27
Golabchi K, Soleimani-Jelodar R, Aghadoost N, et al. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers[J]. J Cell Physiol, 2018, 233(4):3016-3023.
28
Keshavarzi M, Sorayayi S, Jafar Rezaei M, et al. MicroRNAs-based imaging techniques in cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(12):4121-4128.
29
Keshavarzi M, Darijani M, Momeni F, et al. Molecular imaging and oral cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(10): 3055-3060.
30
Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis[J]. J Cell Physiol, 2018, 233(4):2949-2965.
31
Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: Current status and future perspectives[J]. Curr Med Chem, 2016, 23(36):4135-4150.
32
Mirzaei H, Yazdi F, Salehi R, et al. SiRNA and epigenetic aberrations in ovarian cancer[J]. J Cancer Res Ther, 2016, 12(2):498-508.
33
Mohammadi M, Goodarzi M, Jaafari MR, et al. Circulating microRNA: A new candidate for diagnostic biomarker in neuroblastoma[J]. Cancer Gene Ther, 2016, 23(11):371-372.
34
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers[J]. Cancer Gene Ther, 2016, 23(12):415-418.
35
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: moving beyond current cancer therapies[J]. Curr Cancer Drug Targets, 2016, 16(9):773-788.
36
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes[J]. J Cell Biochem, 2018, 119(1):185-196.
37
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers[J]. J Cell Physiol, 2018, 233(7):5200-5213.
38
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis[J]. J Cell Biochem, 2018, 119(2):1285-1290.
39
Mirzaei H, Ferns GA, Avan A, et al. Cytokines and MicroRNA in coronary artery disease[J]. Adv Clin Chem, 2017, 82:47-70.
40
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J]. J Hematol Oncol, 2015,8:122.
41
Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing[J]. RNA, 2004, 10(3):544-550.
42
Bobbin ML, Rossi JJ. RNA interference (RNAi)-Based therapeutics: Delivering on the Promise?[J]. Annu Rev Pharmacol Toxicol, 2016, 56:103-122.
43
Chen JJ, Zhao B, Zhao J, et al. Potential roles of exosomal micrornas as diagnostic biomarkers and therapeutic application in Alzheimer's disease[J]. Neural Plast, 2017, 2017:7027380.
44
Miya Shaik M, Tamargo IA, Abubakar MB, et al. The role of microRNAs in Alzheimer's disease and their therapeutic potentials[J]. Genes (Basel), 2018, 9(4):E174.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[5] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[6] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[7] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[14] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要