切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (02) : 65 -71. doi: 10.3877/cma.j.issn.2095-1221.2019.02.001

论著

TSP1对高糖诱导的肾小管上皮细胞损伤的影响研究
周才芳1,(), 曾秀琴1, 曾庆义1   
  1. 1. 516000 惠州市第三人民医院肾内科
  • 收稿日期:2019-02-15 出版日期:2019-04-01
  • 通信作者: 周才芳

Effect of TSP1 on high glucose-induced damage of renal tubular epithelial cells

Caifang Zhou1,(), Xiuqin Zeng1, Qingyi Zeng1   

  1. 1. Department of Nephropathy, Third People's Hospital of Huizhou City, Huizhou 516000, China
  • Received:2019-02-15 Published:2019-04-01
  • Corresponding author: Caifang Zhou
引用本文:

周才芳, 曾秀琴, 曾庆义. TSP1对高糖诱导的肾小管上皮细胞损伤的影响研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(02): 65-71.

Caifang Zhou, Xiuqin Zeng, Qingyi Zeng. Effect of TSP1 on high glucose-induced damage of renal tubular epithelial cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(02): 65-71.

目的

探讨血小板反应蛋白1(TSP1)对高糖诱导的肾小管上皮细胞损伤及炎症因子分泌的影响。

方法

以肾小管上皮细胞为研究对象,通过转染TSP-1 shRNA(shTSP-1),沉默TSP-1基因,探讨下调TSP1对高糖条件下肾小管上皮细胞损伤的影响。肾小管上皮细胞依次分为:对照组(以5.6 mmol/L葡萄糖培养)、高糖组(以30 mmol/L葡萄糖培养)、NC+高糖组(对照慢病毒转染,以30 mmol/L葡萄糖培养)、干扰+高糖组(TSP1 shRNA慢病毒转染以30 mmol/L葡萄糖培养)。Realtime PCR和Western Blot检测高糖对细胞中TSP1表达影响,同时检测TSP1 shRNA干扰效果。DCFH-DA法检测细胞中活性氧(ROS)水平,硫代巴比妥酸法检测培养液中丙二醛(MDA)含量,ELISA法检测培养液上清中肿瘤坏死因子-α(TNF-α)、白细胞介素-8(IL-8)含量,Annexin V-FITC/PI双染法检测细胞凋亡,Western Blot法检测细胞中活化的Caspase-3(c-caspase-3)蛋白水平。两组均数差异比较采用独立样本t检验,多组均数间差异比较采用单因素方差分析,组间两两比较采用SNK-q检验。

结果

高糖组细胞中TSP1 mRNA和蛋白水平高于对照组(P < 0.05)。干扰+高糖组细胞中TSP1 mRNA和蛋白水平低于高糖组(P < 0.05)。与对照组比较,高糖组细胞中ROS水平升高,培养液中MDA、TNF-α、IL-8含量升高[(2.36±0.21)nmol/ml、(45.91±2.87)ng/ml、(25.42±3.26) ng/ ml :(1.05± 0.13)nmol/ ml、(20.14±1.36)ng/ml、(12.98±1.63)ng/ml],差异有统计学意义(F = 18.595,F = 43.825,F = 21.155,P < 0.05);细胞凋亡率升高(P < 0.05),细胞中c-caspase-3蛋白水平升高(P < 0.05)。与高糖组和NC+高糖组比较,干扰+高糖组细胞中ROS水平降低,培养液中MDA、TNF-α、IL-8含量降低[(1.63±0.10)nmol/ml、(34.20±2.06)ng/ml、(18.75±1.62)ng/ ml :(2.36 ± 0.21) nmol/ ml、(45.91±2.87)ng/ml、(25.42±3.26)ng/ml和(2.30±0.42)nmol/ ml、(46.32±5.24) ng/ml、(26.91±2.74)ng/ml],差异具有统计学意义(F = 18.595,F = 43.825,F = 21.155,P < 0.05);细胞凋亡率降低,细胞中c-caspase-3蛋白水平降低(P < 0.05)。

结论

高糖诱导肾小管上皮细胞中TSP1表达,下调其表达可以减少细胞分泌炎症因子,抑制高糖诱导的肾小管上皮细胞损伤。

Objective

To investigate the effects of TSP1 on renal tubular epithelial cell injury and secretion of inflammatory factors induced by high glucose.

Methods

TSP-1 shRNA (shTSP-1) was transfected into renal tubular epithelial cells to silence TSP-1 gene. The renal tubular epithelial cells were divided into control group (treated with 5.6 mmol/L glucose), high glucose group (treated with 30 mmol/L glucose), NC + high glucose group (treated with 30 mmol/ L glucose, transfected with lentivirus control), interference + high glucose group (treated with 30 mmol/L glucose culture, transfected with TSP1 shRNA lentivirus). Realtime PCR and Western Blot were used to detect the effect of high glucose on the expression of TSP1 and the effect of TSP1 shRNA on the expression of TSP1. The level of ROS in cells was detected by DCFH-DA. The content of MDA in culture medium was detected by thiobarbituric acid. ELISA was used to detect TNF-α and IL-8 in the supernatant of the culture medium. Annexin V-FITC/PI double staining was used to detect apoptosis. Western Blot assay was used to detect c-caspase-3 in cells. Independent sample t test was used to compare the mean difference between the two groups, single factor analysis of variance was used to compare the difference among multiple groups, and SNK-q test was used to compare the two groups.

Results

The levels of TSP1 mRNA and protein in the high glucose group were higher than those in the control group (P < 0.05). The levels of TSP1 mRNA and protein in the interference + high glucose group were lower than those in the high glucose group (P < 0.05). Compared with the control group, the level of ROS in the high glucose group increased, the contents of MDA, TNF-α and IL-8 increased in culture medium, the rate of apoptosis increased, the level of c-caspase-3 protein in the cells increased [ (2.36±0.21) nmol/ml, (45.91±2.87) ng/ml, (25.42±3.26) ng/ ml vs (1.05±0.13) nmol/ml, (20.14±1.36) ng/ml, (12.98±1.63) ng/ml], the difference has statistical significance (P < 0.05). Compared with high glucose group and NC + high glucose group, the level of ROS in the interference + high glucose group decreased, the contents of MDA, TNF-α and IL-8 in culture medium decreased, the apoptosis rate decreased, the level of c-caspase-3 decreased [ (1.63±0.10) nmol/ ml, (34.20±2.06) ng/ml, (18.75±1.62) ng/ml vs (2.36±0.21) nmol/ ml, (45.91±2.87) ng/ ml, (25.42±3.26) ng/ml和(2.30±0.42) nmol/ml, (46.32±5.24) ng/ml, (26.91±2.74) ng/ml], the difference has statistical significance (P < 0.05) .

Conclusion

High glucose induces TSP1 expression in renal tubular epithelial cells, down-regulation of its expression can inhibit high glucose-induced renal tubular epithelial cell injury and reduce cell secretion of inflammatory factors.

表1 高糖诱导肾小管上皮细胞中TSP1表达( ± s
图1 Western Blot测定高糖对肾小管上皮细胞中TSP1表达影响
表2 TSP1 shRNA下调高糖条件下肾小管上皮细胞中TSP1表达水平( ± s
图2 Western Blot检测TSP1 shRNA对高糖条件下肾小管上皮细胞中TSP1表影响
表3 下调TSP1对高糖条件下肾小管上皮细胞培养液中TNF-α、IL-8含量影响( ± s
表4 下调TSP1对高糖条件下肾小管上皮细胞中ROS和培养液中MDA含量影响( ± s
图3 荧光显微镜下观察下调TSP1对高糖条件下肾小管上皮细胞中ROS含量影响(×200)注:a图为对照组,b图为高糖组,c图为NC+高糖组,d图为干扰+高糖组;荧光强度越高,ROS水平也就越高
表5 下调TSP1对高糖条件下肾小管上皮细胞凋亡和c-caspase-3蛋白水平影响( ± s
图4 流式细胞术测定细胞凋亡变化注:a图为对照组,b图为高糖组,c图为NC+高糖组,d图为干扰+高糖组
图5 Western Blot检测细胞中c-caspase-3蛋白水平
1
Kim DY, Kang MK, Park SH, et al. Eucalyptol ameliorates Snail1/beta-catenin-dependent diabetic disjunction of renal tubular epithelial cells and tubulointerstitial fibrosis[J]. Oncotarget, 2017, 8(63):106190-106205.
2
Gou R, Chen J, Sheng S, et al. KIM-1 mediates high Glucose-Induced autophagy and apoptosis in renal tubular epithelial cells[J]. Cell Physiol Biochem, 2016, 38(6):2479-2488.
3
Wu Y, Zhang M, Liu R, et al. Oxidative Stress-Activated NHE1 is involved in high Glucose-Induced apoptosis in renal tubular epithelial cells[J]. Yonsei Med J, 2016, 57(5):1252-1259.
4
Li K, Wu Q, Sun X, et al. Tsp1 promotes alveolar stem cell proliferation and its downregulation relates to lung inflammation in intralobar pulmonary sequestration[J]. Oncotarget, 2017, 8(39):64867-64877.
5
Fleitas T, Martinez-Sales V, Vila V, et al. VEGF and TSP1 levels correlate with prognosis in advanced non-small cell lung cancer[J]. Clin Transl Oncol, 2013, 15(11):897-902.
6
杨小燕,曾嵘,王俭勤, 等. 急性肾衰大鼠肾小管上皮细胞TSP1表达及凋亡的意义[J]. 按摩与康复医学:中旬刊, 2011, 2(5):10-11.
7
付玲,代甜,刘建社. 吡格列酮对糖尿病大鼠肾组织TSP1表达的影响[J]. 华中科技大学学报(医学版), 2009, 38(6):725-728.
8
De Kort H, Heutinck KM, Ruben JM, et al. Primary human Renal-Derived tubular epithelial cells fail to recognize and suppress BK virus infection[J]. Transplantation, 2017, 101(8):1820-1829.
9
Pena C, Hernandez-Fonseca JP, Pedreanez AA, et al. Renal oxidative stress and renal CD8(+) T-cell infiltration in mercuric chloride-induced nephropathy in rats: role of angiotensin II[J]. J Immunotoxicol, 2016, 13(3):324-334.
10
Zhou C, Yool AJ, Byard RW. The etiology of basal vacuolizations in renal tubular epithelial cells evaluated in an isolated perfused kidney model[J]. J Forensic Sci, 2017, 62(4):915-920.
11
Yan Q, Luo H, Wang BY, et al. Correlation between PKB/Akt, GSK-3 beta expression and tubular epithelial-mesenchymal transition in renal allografts with chronic active antibody-mediated rejection[J]. Exp Ther Med, 2017, 13(5):2217-2224.
12
Lopez-Ramirez MA, Fonseca G, Zeineddine HA, et al. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations[J]. J Exp Med, 2017, 214(11):3331-3346.
13
Suades R, Padró T, Alonso R, et al. High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis[J]. Thromb Haemost, 2015, 114(6):1310-1321.
14
Labrousse-Arias D, Castillo-Gonzalez R, Rogers NM, et al. HIF-2 alpha-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction [J]. Cardiovasc Res, 2016, 109(1):115-130.
15
Gao P, Li L, Ji L, et al. Nrf2 ameliorates diabetic nephropathy progression by transcriptional repression of TGF beta 1 through interactions with c-Jun and SP1[J]. Biochim Biophys Acta, 2014, 1839(11):1110-1120.
16
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J]. Exp Cell Res, 2017, 350(2):327-335.
17
Xiang L, Wu TT, Chen J, et al. Elevated expression levels of serum IGF-1,TNF-α and VEGF 165, May exacerbate type 2 diabetic nephropathy[J]. J Diabetes Investig, 2016, 8(1):108-114.
18
Yang HL, Wu SK. Ligustrazine attenuates renal damage by inhibiting endoplasmic reticulum stress in diabetic nephropathy by inactivating MAPK pathways[J]. RSC Adv, 2018, 8(39):21816-21822.
19
Contrerasruiz L, Ryan DS, Sia RK, et al. Polymorphism in THBS1 gene is associated with post-refractive surgery chronic ocular surface inflammation[J]. Ophthalmology, 2014, 121(7):1389-1397.
20
Vives-Bauza C, Gonzalo R, Manfredi G, et al. Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA[J]. Neurosci Lett, 2006, 391(3):136-141.
21
Yang CP, Zhang ZH, Zhang LH, et al. Neuroprotective role of MicroRNA-22 in a 6-Hydroxydopamine-Induced cell model of parkinson’s disease via regulation of its target gene TRPM7[J]. J Mol Neurosci, 2016, 60(4):445-452.
[1] 李友, 唐林峰, 杜伟伟, 刘海亮, 余新水, 沈佳宇, 巨积辉. 皮瓣联合掌长肌腱折叠单排三点式固定治疗指背侧创面伴锤状指畸形的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 485-490.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[8] 周正阳, 陈凯, 仇多良, 邵乐宁, 吴浩荣, 钟丰云. 腹腔镜腹股沟疝修补术后出血原因分析及处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 660-664.
[9] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要