切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (06) : 373 -378. doi: 10.3877/cma.j.issn.2095-1221.2018.06.009

所属专题: 文献

综述

间充质干细胞对Th17/Treg平衡的影响及与IBD的关系
付正伟1, 王丽霞2, 葛海燕1,()   
  1. 1. 200120 上海,同济大学附属东方医院胃肠肛肠外科
    2. 445000 恩施,武汉大学恩施临床学院消毒供应中心
  • 收稿日期:2018-10-30 出版日期:2018-12-01
  • 通信作者: 葛海燕
  • 基金资助:
    中国高校基本科研业务费专项资金(221220180323)

Effect of mesenchymal stem cells on the balance of Th17/Treg and its relationship with IBD

zhengwei Fu1, Lixia Wang2, Haiyan Ge1,,()   

  1. 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
    2. Department of Gastrointestinal Surgery, Enshi Clinical College, Wuhan University School of Medicine, Enshi 445000, China
  • Received:2018-10-30 Published:2018-12-01
  • Corresponding author: Haiyan Ge
  • About author:
    Corresponding author: Ge Haiyan, Email:
引用本文:

付正伟, 王丽霞, 葛海燕. 间充质干细胞对Th17/Treg平衡的影响及与IBD的关系[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 373-378.

zhengwei Fu, Lixia Wang, Haiyan Ge. Effect of mesenchymal stem cells on the balance of Th17/Treg and its relationship with IBD[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(06): 373-378.

辅助性T细胞17(Th17)/调节性T细胞(Treg)失衡是炎症性肠病(IBD)发病的重要因素,纠正Th17/Treg细胞失衡可以减缓或抑制IBD的发生发展,成为治疗IBD的靶点。间充质干细胞具有抗炎及免疫调节功能,通过可溶性因子、细胞接触及外泌体的方式调节适应性和先天性免疫,纠正Th17/Treg失衡缓解IBD,这给IBD的治疗提供新的方向。目前,MSCs和IBD的关系研究较少,本文综述了MSCs调节Th17/Treg平衡及与IBD的关系。

T helper cell 17 (Th17)/regulatory T(Treg) cell imbalance is an important factor in the pathogenesis of inflammatory bowel disease (IBD). Correcting Th17/Treg imbalance can slow or inhibit the development of IBD and become a target for the treatment of IBD. Mesenchymal stem cells (MSCs) have anti-inflammatory and immunoregulatory functions and can regulate adaptive and innate immunity through cell contacts and secretion of soluble factors and exosomes. MSCs alleviate IBD by correcting Th17/Treg imbalance. This paper reviews the regulation of Th17/Treg balance by MSCs and its relationship with IBD.

1
Griffin MD, Elliman SJ, Cahill E, et al. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots?[J]. Stem Cells, 2013, 31(10):2033-2041.
2
Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside[J]. Gut, 2012, 61(6):918-932.
3
Saldanha-Araujo F, Ferreira FI, Palma PV, et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes[J]. Stem Cell Res, 2011, 7(1):66-74.
4
Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol, 2002, 30(1):42-48.
5
Takebe Y, Tatehara S, Fukushima TA, et al. Cryopreservation method for the effective collection of dental pulp stem cells[J]. Tissue Eng Part C Methods, 2017, 23(5):251-261.
6
Bellavia M, Altomare R, Cacciabaudo F, et al. Towards an ideal source of mesenchymal stem cell isolation for possible therapeutic application in regenerative medicine[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2014, 158(3):356-360.
7
Stoltz JF, De Isla N, Li YP, et al. Stem cells and regenerative medicine: myth or reality of the 21th century[J]. Stem Cells Int, 2015 (2015):1-19.
8
Ye JS, Su XS, Stoltz JF, et al. Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes[J]. Cell Prolif, 2015, 48(2):157-165.
9
Reppel L, Margossian T, Yaghi L, et al. Hypoxic culture conditions for mesenchymal stromal/stem cells from wharton's jelly: a critical parameter to consider in a therapeutic context[J]. Curr Stem Cell Res Ther, 2014, 9(4):306-318.
10
Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement [J]. Cytotherapy, 2005, 7(5):393-395.
11
Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells[J]. Allergy, 2011, 66(4):523-531.
12
Caplan AI. Why are MSCs therapeutic? New data: new insight[J]. J Pathol, 2009, 217(2):318-324.
13
Sun YQ, Deng MX, He J, et al. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice [J]. Stem Cells, 2012, 30(12):2692-2699.
14
Han KH, RO H, Hong JH, et al. Immunosuppressive mechanisms of embryonic stem cells and mesenchymal stem cells in alloimmune response[J]. Transpl Immunol, 2011, 25(1):7-15.
15
Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[J]. Blood, 2003, 101(9):3722-3729.
16
English K, Ryan JM, Tobin L, et al. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+ CD25(High) forkhead box P3+ regulatory T cells[J]. Clin Exp Immunol, 2009, 156(1):149-160.
17
Raicevic G, Najar M, Najimi M, et al. Influence of inflammation on the immunological profile of adult-derived human liver mesenchymal stromal cells and stellate cells[J]. Cytotherapy, 2015, 17(2):174-185.
18
Delarosa O, Lombardo E, Beraza AA, et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells[J]. Tissue Eng Part A, 2009, 15(10):2795-2806.
19
Sanchez-AI, Alvarez-LI, Diez-CM, et al. Uptake and delivery of antigens by mesenchymal stromal cells[J]. Cytotherapy, 2013, 15(6):673-678.
20
Ren G, Zhao X, Zhang L, et al. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression[J]. J Immunol, 2010, 184(5):2321-2328.
21
Hemeda H, Jakob M, Ludwig AK, et al. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells[J]. Stem Cells Dev, 2010, 19(5):693-706.
22
Maby-El Hajjami H, Amé-Thomas P, Pangault C, et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase[J]. Cancer Res, 2009, 69(7):3228-3237.
23
Opitz CA, Litzenburger UM, Lutz C, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R[J]. Stem Cells, 2009, 27(4):909-919.
24
Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production [J]. Nat Med, 2009, 15(1):42-49.
25
Wang Y, Chen XD, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications[J]. Nat Immunol, 2014, 15(11):1009-1016.
26
Manuela B, Alessandra F, Rosa L, et al. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles[J]. Cell Transplant, 2013, 22(2):369-379.
27
Mokarizadeh A, Delirezh N, Morshedi A, et al. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling[J]. Immunol Lett, 2012, 147(1/2):47-54.
28
Yang J, Liu XX, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation,oxidative stress and apoptosis[J]. PLoS One, 2015, 10(10):e0140551.
29
Hashemian SJ, Kouhnavard M, Nasli-Esfahani E. Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus[J]. J Diabetes Res, 2015 (2015):675103.
30
Tatara R, Ozaki K, Kikuchi Y, et al. Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation[J]. Cytotherapy, 2011, 13(6):686-694.
31
Ghannam S, Pène J, Moquet-Torcy G, et al. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype[J]. J Immunol, 2010, 185(1):302-312.
32
Oukka M. Th17 cells in immunity and autoimmunity[J]. Ann Rheum Dis, 2008, 67(3):26-29.
33
Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)- 17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat[J]. Nat Immunol, 2008, 9(6):641-649.
34
Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191):65-71.
35
Liu C, Qian W, Qian Y, et al. Act1, a U-box E3 ubiquitin ligase for IL- 17 signaling [J]. Sci Signal, 2009, 2(92):ra63.
36
Andolfi G, Fousteri G, Rossetti M, et al. Enforced IL-10 expression confers type 1 regulatory T cell (Tr1) phenotype and function to human CD4(+) T cells[J]. Mol Ther, 2012, 20(9):1778-1790.
37
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg- mediated T cell suppression[J]. Front Immunol, 2012, 3(21):51.
38
Hongo D, Tang XB, Dutt S, et al. Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants[J]. Blood, 2012, 119(6):1581-1589.
39
Gondek DC, Devries V, Nowak EC, et al. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells[J]. J Immunol, 2008, 181(7):4752-4760.
40
Zhu XM, Shi YZ, Cheng M, et al. Serum IL-6, IL-23 profile and Treg/ Th17 peripheral cell populations in pediatric patients with inflammatory bowel disease[J]. Pharmazie, 2017, 72(5):283-287.
41
Ju JH, Heo YJ, Cho ML, et al. Modulation of STAT-3 in rheumatoid synovial T cells suppresses Th17 differentiation and increases the proportion of Treg cells[J]. Arthritis Rheum, 2012, 64(11):3543-3552.
42
Fonseca-Camarillo G, Yamamoto-Furusho JK. Immunoregulatory pathways involved in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2015, 21(9):2188-2193.
43
Li J, Glover SC. Innate lymphoid cells in inflammatory bowel disease [J]. Arch Immunol Ther Exp (Warsz), 2018, 66(6):415-421.
44
Li J, Ueno A, Gasia MF, et al. Profiles of lamina propria T helper cell subsets discriminate between ulcerative colitis and crohn's disease[J]. Inflamm Bowel Dis, 2016, 22(8):1779-1792.
45
Monteleone I, Sarra M, Pallone F, et al. Th17-Related cytokines in inflammatory bowel diseases: friends or Foes?[J]. Curr Mol Med, 2012, 12(5):592-597.
46
Salas A, Panes JI. Regulatory T cells for treatment of Crohn's disease [J]. Nat Rev Gastroenterol Hepatol, 2015, 12(6):315-316.
47
Ogino H, Nakamura K, Ihara E, et al. CD4(+)CD25(+) regulatory T cells suppress Th17-Responses in an experimental colitis model[J]. Dig Dis Sci, 2011, 56(2):376-386.
48
Menning A, Loddenkemper C, Westendorf AM, et al. Retinoic acid-induced gut tropism improves the protective capacity of Treg in acute but not in chronic gut inflammation[J]. Eur J Immunol, 2010, 40(9):2539-2548.
49
Jiang XP, Huang XL, Yang ZP, et al. Iguratimod ameliorates inflammatory responses by modulating the Th17/Treg paradigm in dextran sulphate sodium-induced murine colitis[J]. Mol Immunol, 2018, 93(1):9-19.
50
Lim SM, Jeong JJ, Jang SE, et al. A mixture of the probiotic strains Bifidobacterium longum CH57 and Lactobacillus brevis CH23 ameliorates colitis in mice by inhibiting macrophage activation and restoring the Th17/Treg balance[J]. J Funct Foods, 2016, 27: 295-309.
51
Ma Y, Wang Z, Zhang A, et al. Human placenta-derived mesenchymal stem cells ameliorate GVHD by modulating Th17/Tr1 balance via expression of PD-L2[J]. Life Sci, 2018, 214(1):98-105.
52
Kong QF, Sun B, Bai SS, et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta[J]. J Neuroimmunol, 2009, 207(1-2):83-91.
53
Cheng Q, Zhang Z, Zhang S, et al. Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation[J]. Brain Res, 2015, 1594(1):293-304.
54
Huang Y, Chen Z. Inflammatory bowel disease related innate immunity and adaptive immunity[J]. Am J Transl Res, 2016, 8(6):2490-2497.
55
刘星星,范恒,唐庆, 等. 过表达CXCR4的间充质干细胞缓解实验性结肠炎[J]. 世界华人消化杂志, 2016 (8):1233-1240.
56
Fu ZW, Zhang ZY, Ge HY. Mesenteric injection of adipose-derived mesenchymal stem cells relieves experimentally-induced colitis in rats by regulating Th17/Treg cell balance[J]. Am J Transl Res, 2018, 10(1):54-66.
57
González MA, Gonzalez-Rey E, Rico L, et al. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses[J]. Gastroenterology, 2009, 136(3):978-989.
58
Bandzar S, Gupta S, Platt MO. Crohn's disease: A review of treatment options and current research [J]. Cell Immunol, 2013, 286(1/2):45-52.
59
Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis [J]. Cell Stem Cell, 2012, 10(5):544-555.
[1] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[2] 刘康凯, 姚光辉. 补肺纳肾汤对COPD稳定期患者肺功能及外周血Treg、Th17细胞比率的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 376-378.
[3] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[4] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[5] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[6] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[7] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[8] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[9] 冯星, 靳洪涛, 马隽, 宋永周, 刘爱京. 间充质干细胞治疗炎性关节炎的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 87-92.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 余佳丽, 江学良. 从炎症性肠病治疗策略转变看生物制剂应用进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 129-134.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要