切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (06) : 348 -354. doi: 10.3877/cma.j.issn.2095-1221.2018.06.005

所属专题: 文献

论著

循环内皮微粒相关microRNA在巨噬细胞炎性反应诱发动脉粥样硬化发生中的作用机制
陈泓颖1, 张宇航1, 高光敏1, 冯程2, 谢文丽1,()   
  1. 1. 100073 北京,首都医科大学电力教学医院老年病房
    2. 100073 北京协和医院整形美容外科
  • 收稿日期:2018-07-11 出版日期:2018-12-01
  • 通信作者: 谢文丽

Mechanism of circulating endothelial microparticles related microRNA in the atherosclerosis induced by inflammatory response of macrophage

Hongying Chen1, Yuhang Zhang1, Guangmin Gao1, Cheng Feng2, Wenli Xie1,,()   

  1. 1. Capital Medical University Electric Power Teaching Hospital Geriatric Ward, Beijing 100073, China
    2. Peking Union Medical College Hospital, Department of Plastic Surgery, Beijing 100073, China
  • Received:2018-07-11 Published:2018-12-01
  • Corresponding author: Wenli Xie
  • About author:
    Corresponding author:Xie Wenli, Email:
引用本文:

陈泓颖, 张宇航, 高光敏, 冯程, 谢文丽. 循环内皮微粒相关microRNA在巨噬细胞炎性反应诱发动脉粥样硬化发生中的作用机制[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 348-354.

Hongying Chen, Yuhang Zhang, Guangmin Gao, Cheng Feng, Wenli Xie. Mechanism of circulating endothelial microparticles related microRNA in the atherosclerosis induced by inflammatory response of macrophage[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(06): 348-354.

目的

研究循环内皮微粒相关microRNA在巨噬细胞炎性反应诱发动脉粥样硬化(AS)发生的作用机制。

方法

选取实验组和对照组SPF级5周小鼠各50只。实验小鼠分4组:对照组、动脉粥样硬化模型组(AS模型组)、NC-miRNA组和miRNA-19b抑制剂组,采用油红染色对AS病变的组织学进行观察,计算斑块面积相对比例,并检测生化指标的表达水平,主要包括血清中高密度脂蛋白胆固醇(HDL-C)、胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)和甘油三酯(TG),ELISA检测血管炎症因子TNF-α、IL-1、IL-6和IL-10的变化,Western Blot检测凋亡相关蛋白Bcl-2、cleaved-caspase-3和Bax表达的变化,实时荧光定量PCR检测miR-19b表达,流式细胞法检测巨噬细胞的凋亡率。多组间比较采用单因素方差分析或者重复测量的方差分析,两两比较采用LSD-t检验。

结果

各组胸腔动脉斑块面积百分比:对照组为(0.00±0.00)%;AS模型组为(9.59±6.53)%;NC-miRNA组为(8.96±3.47)%;miRNA-19b抑制剂组为(3.21±2.03)%,三组间比较差异有统计学意义(F = 20.572,P = 0.002)。与对照组比较,AS模型组和NC-miRNA组TC[AS模型组(3.26±0.21)mmol/L;NC-miRNA组(3.13± 0.14)mmol/ L;F = 13.994,P = 0.002]、TG[AS模型组(0.25±0.06)mmol/L;NC- miRNA(0.21±0.02)mmol/L;F = 11.230,P = 0.011)]和LDL-C [AS模型组(1.65±0.11)mmol/ L;NC-miRNA (1.59± 0.27)mmol/L;F = 10.069,P = 0.006)]水平升高,而HDL-CAS模型组[(0.08±0.09)mmol/L;NC-miRNA (0.08±0.05)mmol/L;F = 12.450,P = 0.004)]水平含量降低。与模型组比较,miRNA-19b抑制剂组TC(1.85±0.06)mmol/L、TG(0.15±0.03)mmol/ L和LDL-C(1.21±0.10)mmol/L水平降低,HDL-C (0.11±0.05)mmol/L水平则升高(P均< 0.05)。AS模型组与对照组相比,IL-1(34.06±3.58)g/L、IL-6(92.57±31.97)g/L和TNF-α(63.01±15.65)g/L水平升高,而IL-10(16.86±1.29)g/L的水平降低,NC-miRNA组各指标亦有相同的变化趋势;miRNA-19b抑制剂组IL-1(24.85±6.21)g/L、IL-6(53.29±17.15)g/ L和TNF-α(34.51±6.47 )g/L水平低于AS模型组和NC-miRNA组(F = 13.671,P = 0.002),IL-10(24.94±4.72)g/L的水平则高于两组(F = 13.675,P = 0.008)。和对照组相比,AS模型组和NC- miRNA组的Bax(AS模型组3.39±0.01;NC-miRNA组0.64±0.02;F = 26.910,P = 0.000)和cleaved-PARP (AS模型组2.47±0.05;NC- miRNA组3.27±0.01;F = 13.226,P = 0.000)表达量升高。但Bcl-2(AS模型组0.67±0.02;NC-miRNA组0.64±0.02;F = 12.585,P = 0.000)表达水平下调。与NC- miRNA组相比,miRNA-19b抑制剂组的促细胞凋亡的蛋白Bax(2.16±0.02)和cleaved-PARP(1.91±0.04)表达水平下调,Bcl-2(1.05±0.01)的表达水平上调。与对照组比较,AS模型组(2.71±0.02)和NC-miRNA组(2.43±0.02)的miRNA- 19b的转录水平增加,差异有统计学意义(P均< 0.05),miRNA-19b抑制剂组(1.52±0.01)转录水平有升高,但相较于AS模型组和NC-miRNA组的变化其增加量不显著,(F = 15.353,P = 0.002)。miRNA-19b基因转录水平:对照组为1.02±0.03;AS模型组为2.71±0.02;NC- miRNA组为2.43±0.02;miRNA- 19b抑制剂组为1.52±0.01(P均 < 0.05)。细胞凋亡率:对照组为(4.41±0.18)%;AS模型组为(7.16±0.73)%;NC-miRNA组为(6.29±0.24)%;miRNA-19b抑制剂组为(5.01±0.11)%,(F = 12.889,P = 0.008)。

结论

miRNA-19b抑制剂可以减少巨噬细胞的凋亡,降低促炎症因子,可减少由于AS引起的血管厚度的增加,减少AS斑块的面积比例,使血脂中的TC、TG和LDL-C水平降低,HDL-C水平则有升高,这对冠心病的临床诊疗具有重要的临床指导意义。

Objective

To study the circulating endothelial microparticles related microRNA in the atherosclerosis induced by inflammatory response of macrophage.

Methods

Five-week-old mice of SPF-grade were randomized to an experimental group and a control group (n = 50 for each group). The experimental mice were divided into four groups: a control group, an atherosclerosis (AS) model group, an NC-microRNA group and a microRNA-19 b inhibitor group. The histology of atherosclerotic lesions was observed with oil red staining, and the plaque area ratio was calculated. Serum cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C), TNF-α, IL-1, IL-6 and IL-10 were measured. The expressions of apoptosis related proteins Bcl-2, cleaved-caspase-3 and Bax were detected with Western Blot, the mir-19b expression was detected with real-time quantitative PCR, and the apoptosis rate of macrophages was detected with flow cytometry. Then the comparison among groups were analyzed with variance by single-factor or repeated measures, the comparison between two groups were analyzed with LSD-t test.

Results

The percentage of plaque area of thoracic artery in each group: (0.00±0.00)% in the control group, (9.59±6.53)% in the AS model group, (8.96±3.47)%in the NC-microRNA group and (3.21±2.03)% in the microRNA19b inhibitor group, and the differences of the three group were statistically significant (F = 20.572, P = 0.002). Compared with the control group, TC (TC) in the AS model group and the NC-microRNA group were as follows: TC[AS model group (3.26±0.21) mmol/L; NC-microRNA group (3.13±0.14) mmol/ L; F = 13.994, P = 13.994, P = 0.002], TG [AS model group 0.25 (0.25±0.06) mmol/ L; AS model group (1.65±0.11) mmol/L; NC-miRNA (1.59±0.27) mmol/L; F = 10.069, P = 0.006) increased, and HDL-C (AS) increased. In the model group, the levels of NC-microRNA (0.08±0.09) mmol/ L, NC-microRNA (0.08±0.05) mmol/L and F = 12.450, P = 0.004 decreased. Compared with the model group, the levels of TC (1.85±0.06) mmol/L, TG (0.15±0.03) mmol/ L and LDL-C (1.21±0.10) mmol/L decreased, while HDL-C (0.11±0.05) mmol/L increased in the miRNA- 19b inhibitor group (P < 0.05). Compared with the control group, the levels of IL-1 (34.06±3.58) g/ L, IL-6 (92.57±31.97) g/Land TNF-alpha (63.01±15.65)g/L increased, while the levels of IL-10 (16.86±1.29) g/L decreased, and the indexes of NC-microNA group also showed a same change trend; the levels of IL-1(24.85±6.21) g/L, IL-6 (53.29±17.15) g/L and TNF-alpha (34.51±6.47) g/ L in the inhibitor group of microRNA-19b were lower than those in the control group. The levels of IL- 10 (24.94±4.72 )g/L in Group A and NC-microRNA (F = 13.671, P = 0.002) were higher than those in Group B (F = 13.675, P = 0.008). Compared with the control group, Bax (AS model group 3.39±0.01; AS model group 3.39±0.01; NC- microRNA group 0.64 ±0.02; F = 26.910, P = 0.000) and cleaved-PARP (AS model group 2.47±0.05; NANC-microRNA group 3.27±0.01; F = 13.226, P = 0.000) expression increased. However, Bcl-2 (model group 0.67±0.02; NC-microRNA group 0.64±0.02; F = 12.585, P = 0.000) expression level was down-regulated. Compared with the NC-microRNA group, the expression levels of Bax (2.16±0.02) and cleaved-PARP (1.91±0.04) were down-regulated, while the expression levels of Bcl-2 (1.05±0.01) were up-regulated. Compared with the control group, the transcription level of microRNA-19b in the AS model group (2.71±0.02) and NC-microRNA group (2.43±0.02) D increased significantly (P < 0.05). The transcription level of the microRNA-19b inhibitor group (1.52±0.01) increased, but the increase was not significant (F = 15.353, P = 0.002) compared with the AS model group and NC-microRNA group. The transcription level of microRNA-19b gene was 1.02±0.03 in the control group, 2.71±0.02 in the AS model group, 2.43±0.02 in the NC-microRNA group and 1.52±0.01 in the microRNA-19b inhibitor group (P < 0.05). Apoptotic rate: (4.41±0.18)% in thecontrol group, (7.16±0.73)% in the AS model group, (6.29±0.24)% in the NC-microRNA group and (5.01±0.11)% in the microRNA19b inhibitor group, (F = 12.889, P = 0.008).

Conclusion

The inhibitor microRNA-19b can reduce macrophage apoptosis, decrease the pro-inflammatory factors, and reduce the development of blood vessel thickness caused by atherosclerosisi. It also can decrease the lipid TC, TG and LDL-C and increase the HDL-C, so that it may have active guiding significance for the clinical diagnosis and treatment of coronary heart disease.

表1 血脂相关性指标的水平测定结果(mmol/L,±s
图1 倒置光学显微下观察动脉血管组织病理变化(Oil-red染色,×600)
表2 各组小鼠血清IL-1、IL-6 IL-10和TNF-α含量比较(g/L,±s
表3 BCL-2、cleaved-PARP以及Bax的蛋白相对表达量(±s
图2 Western Blot检测BCL-2、cleaved-PARP以及Bax表达
图3 miRNA-19b基因转录水平
1
Chrysohoou C, Kollia N, Tousoulis D. The Link between depression and atherosclerosis through the pathways of inflammation and endothelium dysfunction[J]. Maturitas, 2018, 109(5):1-5.
2
Jung YY, Kim KC, Park MH, et al. Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice[J]. Theranostics, 2018, 8(3):749-766.
3
Katakami N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus[J]. J Atheroscler Thromb, 2018, 25(1):27-39.
4
Bornfeldt KE, Kramer F, Batorsky A, et al. A novel type 2 diabetes mouse model of combined diabetic kidney disease and atherosclerosis[J]. Am J Pathol, 2018, 188(2):343-346.
5
He PP, Jiang T, Ouyang XP, et al. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases[J]. Clinica Chimica Acta, 2018, 480(3):126-137.
6
Cochain C, Vafadarnejad E, Arampatzi PA, et al. Single-Cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J]. Circ Res, 2018, 122(12):1661-1674.
7
Richardson G, Sage A, Bennaceur K, et al. Telomerase mediates lymphocyte proliferation but not the Atherosclerosis-Suppressive potential of regulatory T-Cells[J]. Arterioscler Thromb Vasc Biol, 2018, 38(6):1283-1296.
8
Zhong X, Ma X, Zhang L, et al. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models[J]. Biomed Pharmacother, 2018, 97(1):1078-1085.
9
Zernecke A, Haring B, Selvin E, et al. Dietary protein sources and risk for incident chronic kidney disease:results from the atherosclerosis risk in communities(ARIC)study[J]. J Ren Nutr, 2018, 27(4):233-242.
10
Kim HJ, Cha GS, Kim HJ, et al. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein[J]. J Periodontal Implant Sci, 2018, 48(1):60-68.
11
Li CL, Li SF, Zhang F, et al. Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice[J]. Biochem Biophys Res Commun, 2018, 495(2):1922-1929.
12
Huang Y, Qi Y, Du JQ, et al. Protosappanin a protects against atherosclerosis via anti-hyperlipidemia, anti-inflammation and NF-kappa B signaling pathway in hyperlipidemic rabbits[J]. Iran J Basic Med Sci, 2018, 21(1):33-38.
13
Qamar T, Norby FL, Aguilar D, et al. Galectin-3 and incidence of atrial fibrillation:The Atherosclerosis Risk in Communities(ARIC)study[J]. Am Heart J, 2018, 192(11):19-25.
14
Souilhol C, Goodspeed L, Wang S, et al. Deficiency of invariant natural killer T cells does not protect against obesity but exacerbates atherosclerosis in Ldlr-/- Mice[J]. Int J Mol Sci, 2018, 19(2): pii: E510.
15
Pirillo A, Xu D, Wang L. miR-26a inhibits atherosclerosis progression by targeting TRPC3[J]. Cell Biosci, 2018, 8(1):4-4.
16
Naugler C, Harmsen MC, Evans PC, et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4):565-577.
17
Tabib A, Leroux C, Mornex JF, et al. Accelerated coronary atherosclerosis and arteriosclerosis in young human-immunodeficiency-virus-positive patients[J]. Coron Artery Dis, 2000, 11(1):41-46.
18
Canakinumab A, Macfadyen JG, Thuren T, et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis:exploratory results from a randomised, double-blind,placebo-controlled trial[J]. Lancet, 2017, 390(10105):1833-1837.
19
Yuan N, Zhang HF, Wei Q, et al. Expression of CD4+ CD25+ Foxp3+ regulatory T cells, interleukin 10 and transforming growth factor β in newly diagnosed type 2 diabetic patients[J]. Exp Clin Endocrinol Diabetes, 2018, 126(2):96-101.
20
Souilhol C, Harmsen MC, Evans PC, et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4):565-577.
21
Lin QQ, Zhao J, Zheng CG, et al. Roles of notch signaling pathway and endothelial-mesenchymal transition in vascular endothelial dysfunction and atherosclerosis[J]. Eur Rev Med Pharmacol Sci, 2018, 22(19):6485-6491.
22
Sun L, Dou FF, Chen JL, et al. Salidroside slows the progression of EA.hy926 cell senescence by regulating the cell cycle in an atherosclerosis model[J]. Mol Med Rep, 2018, 17(1):257-263
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 王友芳, 李兴超, 朱晓松, 刘清敏, 张建国, 杨淑红, 相然, 张蒙蒙, 车峰远. 预后营养指数对急性颅内动脉粥样硬化性大血管闭塞患者预后评估价值分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 193-197.
[4] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[5] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[6] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[9] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[10] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[11] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[12] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[13] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[14] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[15] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
阅读次数
全文


摘要