切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (06) : 334 -342. doi: 10.3877/cma.j.issn.2095-1221.2018.06.003

所属专题: 文献

论著

间歇式轴向压应力对组织工程骨种子细胞的黏附增殖与成骨分化促进作用的研究
朱聪1, 黄国锋2,(), 江惠祥2, 吴本文1, 林剑彪1, 林伟斌1, 高明明2, 丁真奇1,()   
  1. 1. 363000 漳州,厦门大学附属东南医院 中国人民解放军第909医院(全军创伤骨科中心)
    2. 361102 厦门大学医学院临床医学系
  • 收稿日期:2018-10-23 出版日期:2018-12-01
  • 通信作者: 黄国锋, 丁真奇
  • 基金资助:
    国家自然科学基金(81371951); 军队后勤科研项目(CNJ16C013); 福建省自然科学基金(2016J05208)

Intermittent axial compressive stress promotes adhesion, proliferation and osteogenic differentiation of seed cells in tissue engineered bone

Cong Zhu1, Guofeng Huang2,,(), Huixiang Jiang2, Benwen Wu1, Jianbiao Lin1, Weibin Lin1, Mingming Gao2, Zhenqi Ding1,()   

  1. 1. Department of Orthopedic Surgery, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, Zhangzhou 363000, China
    2. Department of Clinical Medicine, Medical College of Xiamen University, Xiamen 361102, China
引用本文:

朱聪, 黄国锋, 江惠祥, 吴本文, 林剑彪, 林伟斌, 高明明, 丁真奇. 间歇式轴向压应力对组织工程骨种子细胞的黏附增殖与成骨分化促进作用的研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 334-342.

Cong Zhu, Guofeng Huang, Huixiang Jiang, Benwen Wu, Jianbiao Lin, Weibin Lin, Mingming Gao, Zhenqi Ding. Intermittent axial compressive stress promotes adhesion, proliferation and osteogenic differentiation of seed cells in tissue engineered bone[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(06): 334-342.

目的

探究间歇式轴向压应力对组织工程骨种子细胞黏附、增殖与成骨分化能力的影响。

方法

构建表达绿色荧光蛋白的兔骨髓间充质干细胞(rBMSCs)作为示踪种子细胞,运用旋转细胞培养仪将松质骨支架和种子细胞共培养7 d获得组织工程骨(TEB),实验组在第7 ~ 14天施加大小10 N、频率1 Hz、4 h/d的间歇式轴向压应力刺激,对照组常规培养,14 d后胰酶消化法获取两组种子细胞并比较其黏附、增殖和成骨分化能力。采用两组独立样本t检验进行统计学分析。

结果

(1)流式细胞术显示rBMSCs被成功提取分离。(2)倒置荧光显微镜及扫描电镜显示TEB中种子细胞与支架相容性良好。(3)活体荧光成像系统及扫描电镜显示应力刺激组种子细胞的生长状况要优于非应力刺激组,前者平均荧光密度及细胞数/500倍视野均大于后者,差异均具有统计学意义(平均荧光密度:(3.75±0.34)×108 vs (2.91±0.22)×108t = 2.90,P = 0.04;细胞数/500倍视野:30.50±4.43 vs 21.00±5.13,t = 3.14,P = 0.01)。(4)细胞黏附实验显示,应力刺激组种子细胞的75%细胞贴壁时间短于非应力刺激组,两组时间分别为(3.00±0.41)h、(13.33±1.70)h,差异具有统计学意义(t = 8.20,P < 0.01),前者的最终细胞贴壁率高于后者(99.97%±0.34% vs 85.83%±1.18%),差异具有统计学意义(t = 11.31,P < 0.01)。(5)CCK-8检测显示,在培养第48 ~ 96 h,应力刺激组种子细胞的增殖能力优于非应力刺激组,将两者的450 nm吸光度值在第48小时(0.49±0.02、0.40±0.02)、72 h(0.76±0.07、0.64±0.04)和96 h(1.58±0.07、1.34±0.13)分别进行比较,差异均具有统计学意义(t = 5.15、2.57、2.86,P均< 0.01)。(6)在成骨诱导14 d后,应力刺激组种子细胞的ALP和Ca结节染色阳性率要强于非应力刺激组:两组ALP染色阳性率分别为26.73%±4.56%、16.68% ± 3.89%,差异具有统计学意义(t =3.33,P = 0.03);两组Ca结节染色阳性率分别为41.81%±3.56%、27.40% ± 2.35%,差异具有统计学意义(t = 3.68,P = 0.02)。

结论

间歇性轴向压应力可促进组织工程骨种子细胞的黏附、增殖与成骨分化。

Objective

To investigate the effect of intermittent axial compressive stress on adhesion, proliferation and osteogenic differentiation of seed cells in tissue engineered bone.

Methods:

Rabbit bone marrow mesenchymal stem cells that expressed green fluorescent protein were used as seed cells, a rotation training instrument was used to co-culture cancellous bone scaffold and seed cells together for 7 days to obtain tissue engineered bone (TEB), then the TEB were divided into two groups. One group was subjected to cyclic uniaxial compressive stress stimulation of a magnitude of 10 N, frequency of 1 Hz, and duration of 4 hours per day from days 7 ~ 14, the other group had no stress stimulation. Finally, two groups of seed cells were obtained by trypsinization, and their ability of adhesion, proliferation and osteogenic differentiation were compared.

Results

(1) Flow cytometry identification showed that rBMSCs were successfully isolated. (2) Inverted fluorescence microscope and scanning electron microscopy showed that the seed cells of TEB had good compatibility with the scaffold. (3) Results obtained from in vivo fluorescence imaging system and scanning electron microscopy showed that the growth of seed cells in stress-stimulation group was better than that in non-stress stimulation group. The average fluorescence density and cell number / 500-fold visual field of the former were larger than the latter, and the difference was statistically significant (average fluorescence density:(3.75 ± 0.34)×108 vs (2.91 ± 0.22)×108, t = 2.90, P = 0.04; cell number / 500-fold visual field: 30.50 ± 4.43 vs 21.00 ± 5.13, t = 3.14, P = 0.01). (4) Cell adhesion experiments showed that cell attachment time of 75% seed cells in stress-stimulation group. With the time of (3.00 ± 0.41) h and (13.33 ± 1.70) h respectively, the difference was statistically significant (t = 8.20, P < 0.01). Besides, the final cell adherence rate of the former was significantly higher than the latter (99.97%± 0.34% vs 85.83% ± 1.18%), and the difference was statistically significant (t = 11.31, P < 0.01). (5) CCK-8 assay showed that the seed cells of the stress-stimulation group proliferated more rapidly than those of the non-stress stimulation group during the 48 th - 96 th h, and the 450 nm absorbance values were as follows: at the 48 th h, the values were 0.49 ± 0.02 and 0.40 ± 0.02 respectively, at the 72 th h, the values were 0.76 ± 0.07, 0.64 ± 0.04, at the 96 th h, the values were 1.58 ± 0.07, 1.34 ± 0.13, and the difference was statistically significant (t = 5.15, 2.57, 2.86, P < 0.05). (6) After 14 days since osteogenic induction, the positive rate of ALP and Ca nodule staining in seed cells of stress-stimulation group was significantly higher than that in non-stress stimulation group. The positive rates of ALP staining in the two groups were 26.73%± 4.56%and 16.68%± 3.89%respectively, and the difference was statistically significant (t = 3.33, P = 0.03). The positive rate of Ca nodule staining in the two groups were 41.81%± 3.56% and 27.40% ± 2.35% respectively, and the difference was statistically significant (t = 3.68, P = 0.02).

Conclusion

Intermittent axial compressive stress stimulation could accelerate adhesion, proliferation and osteogenic differentiation of seed cells in TEB.

图1 间歇性轴向压应力施加于TEB的过程
图2 倒置生物显微镜下rBMSCs的形态(×60)
图3 rBMSCs的表面分子流式鉴定结果
图4 示踪种子细胞的构建及TEB的构建与验证
表1 两组种子细胞生存活性、增殖及成骨分化能力评估指标比较(±s
图5 活体荧光成像系统下非应力刺激组与应力刺激组TEB培养1周后荧光强度比较
图6 扫描电子显微镜下培养1周后两组种子细胞在TEB支架表面生存情况(×200)
图7 非应力刺激组与应力刺激组种子细胞贴壁率比较
图8 非应力刺激组与应力刺激组种子细胞在450 nm波长处的吸光度值比较
图9 倒置生物显微镜下非应力刺激组与应力刺激组种子细胞成骨诱导后ALP染色结果(改良Gomori钙钴法染色,×60)
图10 倒置生物显微镜下非应力刺激组与应力刺激组种子细胞成骨诱导后Ca结节染色结果(茜素红染色,×60)
1
Molina CS, Stinner DJ, Obremskey WT. Treatment of traumatic segmental Long-Bone defects: a critical analysis review[J]. JBJS Rev, 2014, 2(4).
2
Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78:1246-1262.
3
Pobloth AM, Johnson KA, Schell H, et al. Establishment of a preclinical ovine screening model for the investigation of bone tissue engineering strategies in cancellous and cortical bone defects[J]. BMC Musculoskelet Disord, 2016, 17:111.
4
Roddy E, Debaun MR, Daoud-Gray A, et al. Treatment of critical-sized bone defects:clinical and tissue engineering perspectives[J]. Eur J Orthop Surg Traumatol, 2018, 28(3):351-362.
5
Chen JH, Liu C, You LD, et al. Boning up on wolff's law: mechanical regulation of the cells that make and maintain bone[J]. J Biomech, 2010, 43(1, SI):108-118.
6
Jagodzinski M, Krettek C. Effect of mechanical stability on fracture healing - an update[J]. Injury, 2007, 38 Suppl 1:S3-10.
7
Lee SH, Moon JH, Jeong CM, et al. The mechanical properties and biometrical effect of 3D preformed titanium membrane for guided bone regeneration on alveolar bone defect[J]. Biomed Res Int, 2017:7102123.
8
Yao JF, Shen JZ, Li DK, et al. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research[J]. Int J Med Sci, 2012, 9(6):462-466.
9
Huang G, Liu G, Zhang F, et al. Combination of heel-strike like mechanical loading with deproteinized cancellous bone scaffold implantation to repair segmental bone defects in rabbits[J]. Int J Med Sci, 2017, 14(9):871-879.
10
黄国锋,陈奇,叶永贤, 等. 骨应力刺激仪叩击治疗促进兔胫骨缺损内成骨及支架降解的实验研究[J]. 中华创伤骨科杂志, 2016, 18(10):895.
11
Radtke CL, Nino-Fong R, Esparza GB, et al. Characterization and osteogenic potential of equine muscle tissue-and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow-and adipose tissue-derived mesenchymal stem cells[J]. Am J Vet Res, 2013, 74(5):790-800.
12
Bosetti M, Sabbatini M, Nicolì E, et al. Effects and differentiation activity of IGF-I, IGF-II, insulin and preptin on human primary bone cells[J]. Growth Factors, 2013, 31(2):57-65.
13
Tanaka SM, Tachibana K. Frequency-Dependence of mechanically stimulated osteoblastic calcification in Tissue-Engineered bone in vitro[J]. Ann Biomed Eng, 2015, 43(9):2083-2089.
14
Liu C, Abedian R, Meister R, et al. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds[J]. Biomaterials, 2012, 33(4):1052-1064.
15
Ravichandran A, Lim J, Chong M, et al. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(8):2366-2375.
16
Jung Y, Kim SH, Kim YH, et al. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells[J]. Biomedical Materials, 2009, 4(5):055009.
17
Brunelli M, Perrault CM, Lacroix D. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold[J]. J Mech Behav Biomed Mater, 2017, 71:165-174.
18
Uzer G, Fuchs RK, Rubin J, et al. Concise review: plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage[J]. Stem Cells, 2016, 34(6):1455-1463.
19
Chen X, Yan JK, He F, et al. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway[J]. Free Radic Biol Med, 2018, 126:187-201.
20
Song F, Jiang D, Wang T et al. Mechanical Stress Regulates Osteogenesis and Adipogenesis of Rat Mesenchymal Stem Cells through PI3K/Akt/GSK-3beta/beta-Catenin Signaling Pathway[J]. Free Radic Biol Med, 2017, 2017:6027402.
[1] 傅子财, 戴冠东, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 过氧化物酶体增殖物激活受体在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 363-367.
[2] 任琼, 吴东燕, 李中花, 石晶, 张静, 耿丽伟. 血清降钙素原、基质金属蛋白酶-9和可溶性细胞间黏附分子-1联合检测对绒毛膜羊膜炎的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 194-199.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 郑嘉裕, 吴建杰, 李小娟, 曾恒达, 李国邦, 黄炯煅, 温星桥. hsa_circ_0090923在前列腺癌中的表达及其对前列腺癌细胞增殖和迁移的调控[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 276-283.
[5] 张沥, 宋俊华, 何皓, 杨雪瑶, 周康. 血清D-D、PAI-1、sICAM-1水平与糖尿病合并肺部感染病情严重程度及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 203-205.
[6] 余慧, 王静, 杜丹, 杨帆. 下调miR-301a-3p抑制人卵巢颗粒KGN细胞增殖和诱导凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 137-143.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 施我大, 张亚军, 施展, 吴纪祥, 常绘文, 易忠权, 梁晓东, 周晶晶, 宋建祥. Treg细胞通过上调TGF-β1和B7-H3表达促进食管癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 65-75.
[9] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[10] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[11] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要