切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (04) : 218 -223. doi: 10.3877/cma.j.issn.2095-1221.2018.04.005

所属专题: 文献

论著

硫化氢通过调控SIRT1抑制阿霉素诱导的H9c2细胞损伤
哈斯高娃1,(), 曹中朝1, 刘东华1   
  1. 1. 010059 内蒙古医科大学附属医院老年病科
  • 收稿日期:2018-03-12 出版日期:2018-08-01
  • 通信作者: 哈斯高娃

Hydrogen sulfide inhibits doxorubicin-induced cell injury of H9c2 cells by regulating SIRT1 expression

Hasigaowa1,(), Zhongchao Cao1, Donghua Liu1   

  1. 1. Department of Geriatrics, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, China
  • Received:2018-03-12 Published:2018-08-01
  • Corresponding author: Hasigaowa
  • About author:
    Corresponding author:Hasigaowa, Email:
引用本文:

哈斯高娃, 曹中朝, 刘东华. 硫化氢通过调控SIRT1抑制阿霉素诱导的H9c2细胞损伤[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(04): 218-223.

Hasigaowa, Zhongchao Cao, Donghua Liu. Hydrogen sulfide inhibits doxorubicin-induced cell injury of H9c2 cells by regulating SIRT1 expression[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(04): 218-223.

目的

探讨硫化氢(H2S)对阿霉素(DOX)诱导的H9c2细胞损伤的影响及其作用机制。

方法

H2S对DOX心肌毒性保护作用的实验分组为:对照组(Control组),5?μmol/?L DOX处理组(A组),5?μmol/L DOX和400?μmol/L NaHS共同处理组(B组),400?μmol/L NaHS单独处理组(C组),5?μmol/L DOX、400?μmol/L NaHS和15?μmol/L Sirtinol共同处理组(D组),15?μmol/L Sirtinol单独处理组(E组)。SIRT1是否参与H2S抗DOX心肌毒性作用机制的实验分组为:对照组(Control组),5?μmol/L DOX处理组(F组),5?μmol/L DOX和400?μmol/L NaHS共同处理组(G组),5?μmol/L DOX、400?μmol/L NaHS和15?μmol/L Sirtinol共同处理组(H组),15?μmol/L Sirtinol单独处理组(I组)。使用MTT法检测细胞活力;Elisa法检测细胞MDA以及SOD水平;DCFH-?DA荧光探针法检测ROS水平;采用Western Blot法检测SIRT1蛋白表达。使用单因素方差分析法进行统计学分析。

结果

NaHS预处理可抑制DOX导致的H9c2细胞活力下降:Control组,A组、B组、C组细胞活力分别为100﹪、(54.58±1.58)﹪、(85.05±4.31)﹪、(100.22±4.46)﹪ (F = 134.9,P < 0.001)。NaHS预处理可减弱DOX引起的H9c2细胞ROS、MDA水平的增加以及SOD水平的降低:Control组的ROS、MDA和SOD水平分别是100﹪、(34.18±1.56) μmol/g、(53.69±1.44) U/?mg;A组的ROS、MDA和SOD水平分别是(174.90±12.65)﹪、(72.65±2.66) μmol/g、(31.80±2.05) U/?mg;B组的ROS、MDA和SOD水平分别是(126.08±6.25)﹪、(44.59±1.92) μmol/g、(48.06±1.56) U/mg;C组的ROS、MDA和SOD水平分别是(91.86±1.66)﹪、(32.93±1.56)?μmol/?g、(55.93±1.58)?U/?mg (F?= 83.26,P < 0.001;F = 271.4,P < 0.001;F = 127.0,P < 0.001)。F组(6、12、24?h)H9c2细胞SIRT1蛋白表达水平分别是(0.45±0.03)、(0.27±0.02)、(0.25±0.03),较Control组(1.00±0.00)降低(F = 611.1,P < 0.001)。本研究还发现,NaHS预处理H9c2细胞能阻止DOX引起的SIRT1蛋白表达下调:Control组、F组、G组、H组的SIRT1蛋白表达水平分别是(1.00±0.00)、(0.31±0.03)、(0.60±0.04)、(1.09±0.09)(F = 123.4,P?<?0.001)。SIRT1抑制剂Sirtinol预处理能明显逆转H2S对DOX诱导的H9c2细胞活力降低的抑制作用:Control组,F组、G组、H组、I组细胞活力分别为100﹪、(54.58±1.58)﹪、(85.37±3.62)﹪、(71.11±2.11)﹪、(97.53±1.45)﹪ (F = 238.2,P < 0.001)。Sirtinol预处理可明显逆转H2S对DOX导致的H9c2细胞ROS和MDA含量增加及SOD水平降低的抑制作用:Control组的ROS、MDA和SOD水平分别是100﹪、(35.84±2.22)μmol/?g、(53.03±3.16) U/mg;F组的ROS、MDA和SOD水平分别是(184.6±11.33)﹪、(74.78±5.30)μmol/g、(29.26±0.85)U/mg;G组的ROS、MDA和SOD水平分别是(126.5±7.57)﹪、(41.95±3.43)μmol/g、(52.61±2.26)U/mg;H组的ROS、MDA和SOD水平分别是(174.7±5.50)﹪、(67.69±1.52) μmol/g、(35.33±1.95) U/mg,I组的ROS、MDA和SOD水平分别是(98.03±2.86)﹪、(37.66±2.49)μmol/g、51.14 U/mg(F = 112.0,P < 0.001;F = 93.73,P < 0.001;F = 84.92,P < 0.001)。

结论

H2S通过调控SIRT1抑制DOX诱导的H9c2细胞损伤。

Objective

To investigate the effect of hydrogen sulfide(H2S) on doxorubicin(DOX)-induced cell injury of H9c2 cells and its possible mechanism.

Methods

The experimental groups are as follows: Control group, 5 mol/L DOX treated group A, 5 mol/L DOX and 400 μmol/L NaHS co-treated group B, 400?μmol/L NaHS treated group C, 5 mol/L DOX, 400?μmol/?L NaHS and 15 mol/L Sirtinol co-treated group D, 15?mol/?L Sirtinol treated group E. Another expression level of SIRT1 groups are as follows: Control group, 5 mol/L DOX treated group F, 5?mol/L DOX and 400 μmol/L NaHS co-treated group G, 400 μmol/L NaHS and 15 mol/?L Sirtinol co-treated group H, 15?mol/?L Sirtinol treated group I. The viability of H9c2 cells was measured by MTT assay. The levels of MDA and SOD were detected by Elisa. ROS level were measured using DCFH-DA fluorescent probe. The expression of SIRT1 protein were detected by Western Blot.

Results

NaHS pretreatment significantly inhibited DOX-induced cell death: the viability in Control group, A group, B group, C group was 100﹪, (54.58±1.58)﹪, (85.05±4.31)﹪ and (100.22±4.46)﹪ respectively (F = 134.9, P < 0.001). NaHS pretreatment significantly prevented DOX-induced ROS and MDA levels and increased SOD levels in H9c2 cells: the levels of ROS, MDA and SOD in Control group were 100﹪, (34.18±1.56) μmol/g, (53.69±1.44) U/mg respectively; the levels of ROS, MDA and SOD in A group are (174.90±12.65)﹪, (72.65±2.66) μmol/g, and (31.80±2.05) U/?mg respectively; the levels of ROS, MDA and SOD in B group were (126.08±6.25)﹪, (44.59±1.92)?μmol/?g, (48.06±1.56) U/mg respectively; the levels of ROS, MDA and SOD in C group were (91.86±1.66)﹪, (32.93±1.56) μmol/?g, (55.93±1.58) U/mg respectively (F = 83.26, P < 0.001; F = 271.40, P < 0.001; F = 127.00, P < 0.001). The expression level of SIRT1 protein was markedly decreased after treatment with DOX for 6 h, 12 h or 24 h (F?= 611.10, P < 0.001), which were prevented by NaHS pretreatment: the expression level of SIRT1 in Control group, F group, G group, and H group were 1.00±0.00, 0.31±0.03, 0.60±0.04, and 1.09±0.09 respectively (F?= 123.40, P < 0.001). Sirtinol, the inhibitor of SIRT1, reversed the inhibitory effect of H2S on DOX-induced cell death: cell viability in Control group, F group, G group, H group, and I group were 100﹪, (54.58±1.58)﹪, (85.37±3.62)﹪, (71.11±2.11)﹪, and (97.53±1.45)﹪ respectively (F = 238.20, P < 0.001). Sirtinol pretreatment markedly reversed the inhibitory effect of H2S on DOX-induced increases in ROS as well as MDA levels and decrease in SOD levels: the levels of ROS, MDA and SOD in Control group were 100﹪, (35.84±2.22) μmol/?g, (53.03±3.16) U/mg respectively; the levels of ROS, MDA and SOD in F group were (184.6±11.33)﹪, (74.78±5.30) μmol/g, and (29.26±0.85)?U/?mg respectively; the levels of ROS, MDA and SOD in G group were (126.5±7.57)﹪, (41.95±3.43) μmol/g, (52.61±2.26) U/mg respectively; the levels of ROS, MDA and SOD in H group were (174.7±5.50)﹪, (67.69±1.52) μmol/g, (35.33±1.95) U/mg respectively, the levels of ROS, MDA and SOD in I group were (98.03±2.86)﹪, (37.66±2.49)?μmol/?g, (51.14 U/mg) respectively (F = 112.00, P < 0.001; F = 93.73, P < 0.001; F = 84.92, P < 0.001).

Conclusion

H2S inhibits DOX-induced cell injury of H9c2 cells by modulation of SIRT1 expression.

表1 H2S对DOX诱导的H9c2细胞活力和氧化应激的影响( ± s
图1 H2S和DOX对H9c2细胞SIRT1蛋白表达的影响
表2 Sirtinol减弱H2S抑制DOX导致的H9c2细胞活力降低和氧化应激( ± s
1
Gergely S,Hegedűs C,Lakatos P, et al. High throughput screening identifies a novel compound protecting cardiomyocytes from Doxorubicin-Induced damage[J]. Oxid Med Cell Longev, 2015:178513.
2
DeSantis CE,Siegel RL,Sauer AG, et al. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities[J]. CA Cancer J Clin, 2016, 66(4):290-308.
3
Wen SY,Tsai CY,Pai PY, et al. Diallyl trisulfide suppresses doxorubicin-induced cardiomyocyte apoptosis by inhibiting MAPK/NF-kappa B signaling through attenuation of ROS Generation[J]. Environ Toxicol, 2018, 33(1):93-103.
4
Bloom MW,Hamo CE,Cardinale D, et al. Cancer Therapy-Related cardiac dysfunction and heart failure:part 1:definitions,pathophysiology,risk factors,and imaging[J]. Circ Heart Fail, 2016, 9(1):e002661.
5
Li DL,Hill JA. Cardiomyocyte autophagy and cancer chemotherapy[J]. J Mol Cell Cardiol, 2014, 71:54-61.
6
Du S,Huang Y,Jin H, et al. Protective mechanism of hydrogen sulfide against chemotherapy-induced cardiotoxicity[J]. Front Pharmacol, 2018, 9:32.
7
Huang Z,Dong X,Zhuang X, et al. Exogenous Hydrogen sulfide protects against high glucoseinduced inflammation and cytotoxicity in H9c2 cardiac cells[J]. Mol Med Rep, 2016, 14(5):4911-4917.
8
Liu MH,Zhang Y,He J, et al. Hydrogen sulfide protects H9c2 cardiac cells against doxorubicin-induced cytotoxicity through the PI3K/Akt/FoxO3a pathway[J]. Int J Mol Med, 2016, 37(6):1661-1668.
9
Liu MH,Lin XL,Yuan C, et al. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity. by inhibiting the expression of peroxiredoxin III in H9c2 cells[J]. Mol Med Rep, 2016, 13(1):367-372.
10
Singh CK,Chhabra G,Ndiaye MA, et al. The role of sirtuins in antioxidant and redox signaling[J]. Antioxid Redox Signal, 2018, 28(8):643-661.
11
Dai GF,Wang Z,Zhang JY. Octreotide protects doxorubicin-induced cardiac toxicity via regulating oxidative stress[J]. Eur Rev Med Pharmacol Sci, 2018, 22(18):6139-6148.
12
He H,Luo Y,Qiao Y, et al. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative stress and preventing mitochondrial dysfunction mediated by 14-3-3gamma[J]. Food Funct, 2018, 9(8):4404-4418.
13
Yu Z,Zhang W,Zhang M, et al. Gas signaling molecule Hydrogen sulfide attenuates doxorubicin-induced dilated cardiomyopathy[J]. Oncotarget, 2017, 8(56):95425-95431.
14
Liu MH,Lin XL,Zhang Y, et al. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting reactive Oxygen species-activated extracellular signal-regulated kinase 1/2 in H9c2 cardiac myocytes[J]. Mol Med Rep, 2015, 12(5):6841-6848.
15
Guo RM,Xu WM,Lin JC, et al. Activation of the p38 MAPK/NF-kappa B pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells[J]. Mol Med Rep, 2013, 8(2):603-608.
16
Su YW,Liang C,Jin HF, et al. Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy[J]. Circ J, 2009, 73(4):741-749.
17
Alcendor RR,Gao S,Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart[J]. Circ Res, 2007, 100(10):1512-1521.
18
D'onofrio N,Servillo L,Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection[J]. Antioxid Redox Signal, 2018, 28(8):711-732.
19
Wu D,Hu Q,Liu X, et al. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes [J]. Nitric Oxide, 2015, 46:204-212.
20
Liu AJ,Li B,Yang M, et al. Sirtuin 1 mediates Hydrogen sulfide-induced cytoprotection effects in neonatal mouse cardiomyocytes[J]. Chin Med J (Engl), 2017, 130(19):2346-2353.
[1] 郑永红, 蔡思媛, 项国剑, 黄海建, 叶志强, 张建成. β3肾上腺素能受体在慢性心力衰竭大鼠中高表达及可能机制[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 107-112.
[2] 沈丛墨, 李毅. 硫化氢及硫化氢与细胞内钙离子关系的研究概况[J]. 中华损伤与修复杂志(电子版), 2020, 15(01): 70-72.
[3] 杨浩, 李毅, 梁琰. 硫化氢调控微小核糖核酸对内质网应激影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 307-310.
[4] 梁琰, 李毅. 硫化氢对线粒体损伤后氧化呼吸链影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2018, 13(05): 383-385.
[5] 耿莉莉, 李毅. 硫化氢与机体损伤后线粒体变化关系的研究现状[J]. 中华损伤与修复杂志(电子版), 2018, 13(04): 305-307.
[6] 唐诚, 李毅. 硫化氢促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2018, 13(01): 69-71.
[7] 邹明, 李毅. 硫化氢对组织损伤后内质网应激影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2017, 12(05): 378-381.
[8] 董金玲, 谢志宏, 何杰, 张颖. 慢性丙型肝炎合并脂肪肝患者Sirt1和固醇调节元件结合蛋白表达及意义[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(06): 577-584.
[9] 任国华, 杜晓晓, 洪善玲, 邵帅. 妊娠期高血压并发急性肾损伤患者血清白细胞介素-22、硫化氢及护骨素水平的变化与意义[J]. 中华肾病研究电子杂志, 2023, 12(03): 150-155.
[10] 张文文, 闫琰, 董毅玲, 覃志成. 外源性硫化氢抑制TLR2和TLR4表达并减轻大鼠肾脏缺血再灌注损伤[J]. 中华肾病研究电子杂志, 2022, 11(02): 61-66.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 邹杰锋, 许云鹏, 张燕子, 隋晓露, 袁树珍, 曾启城, 李丽香, 谢婷妃, 徐子斌, 陈继红. JAK2/STAT3信号通路在局灶节段性肾小球硬化足细胞损伤中的作用及机制[J]. 中华临床医师杂志(电子版), 2021, 15(09): 683-690.
[13] 季青山, 俞茜, 孙思勤, 温跃春, 柯根杰. miR-34a/SIRT1表达水平与大鼠白内障发生的相关性研究[J]. 中华临床医师杂志(电子版), 2017, 11(13): 1982-1986.
[14] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
[15] 唐柯馨, 林熙, 单鸿. 经聚乙烯亚胺钝化的荧光碳点负载阿霉素抑制非小细胞肺癌细胞增殖、迁移侵袭的治疗研究[J]. 中华介入放射学电子杂志, 2022, 10(02): 131-136.
阅读次数
全文


摘要