切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 146 -151. doi: 10.3877/cma.j.issn.2095-1221.2018.03.004

所属专题: 文献

论著

肾透明细胞癌预后相关miRNAs的生物信息学分析
付军明1, 肖招兰1, 何富强1, 郭君其1, 谭建明1, 朱凌峰1,()   
  1. 1. 350025 福州,福州总医院泌尿外科
  • 收稿日期:2017-11-10 出版日期:2018-06-01
  • 通信作者: 朱凌峰
  • 基金资助:
    福建省自然科学基金项目(2016J0105)

Bioinformatics analysis of prognosis-related miRNAs in clear cell renal cell carcinoma

Junming Fu1, Zhaolan Xiao1, Fuqiang He1, Junqi Guo1, Jianming Tan1, Lingfeng Zhu1,()   

  1. 1. Department of Urology, Fuzhou General Hospital, Fuzhou 350025, China
  • Received:2017-11-10 Published:2018-06-01
  • Corresponding author: Lingfeng Zhu
  • About author:
    Corresponding: Zhu Lingfeng, Email:
引用本文:

付军明, 肖招兰, 何富强, 郭君其, 谭建明, 朱凌峰. 肾透明细胞癌预后相关miRNAs的生物信息学分析[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 146-151.

Junming Fu, Zhaolan Xiao, Fuqiang He, Junqi Guo, Jianming Tan, Lingfeng Zhu. Bioinformatics analysis of prognosis-related miRNAs in clear cell renal cell carcinoma[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 146-151.

目的

寻找可作为肾透明细胞癌(ccRCC)生物标志物的miRNA,以及ccRCC与正常组织间miRNA差异表达情况。

方法

利用TCGA数据库下载ccRCC中miRNA表达数据,分析肿瘤与正常组织间差异表达miRNA。使用Kaplan-Meier曲线对患者进行生存分析,筛选出表达情况与临床预后相关的miRNA。通过生物信息学对miRNA的靶基因进行预测,然后运用FunRich软件和ClueGO对靶基因进行GO和KEGG富集分析。

结果

通过TCGA数据库分析发现,ccRCC较正常组织差异表达miRNA共54个,其中上调33个,下调21个。通过生存分析发现hsa-miR-21和hsa-miR-155与患者预后相关,P≤0.05。进一步通过Perl软件在Targetscan、miRDB、miRTarBase、miRPath这四个数据库中预测miRNA靶基因并将结果取交集,共发现129个靶基因。GO和KEGG分析结果表明,这些靶基因主要与转录因子活性、信号转导以及FoxO、TNF等信号通路密切相关。

结论

通过生物信息学分析发现了ccRCC与正常组织的差异表达miRNA;其中hsa-miR-21和hsa-miR-155与患者总体生存率相关,并通过调控靶基因参与相关的信号通路进而影响ccRCC的发生发展进程,提示hsa-miR-21和hsa-miR-155可能是ccRCC潜在的生物标志物。

Objective

To discover miRNAs which can be used as biomarkers of clear cell renal cell carcinoma (ccRCC) as well as ravel differentially expressed miRNAs between ccRCC and normal tissues.

Methods

The miRNAs expression data of ccRCC was used to analyze differentially expressed miRNAs between tumors and normal tissues according to TCGA database. Survival analysis was performed using Kaplan-Meier curves to screen out miRNAs, which the expression was correlated with clinical prognosis. The target genes of miRNAs were predicted by bioinformatics, then GO and KEGG enrichment analyses of target genes were carried out by using FunRich software and ClueGO software.

Results

According to TCGA database analysis, there were 54 miRNAs found differentially expressed in ccRCC compared with normal tissues, of which 33 were up-regulated and 21 were down-regulated. Survival analysis found that hsa-miR-21 and hsa- miR-155 were associated with the prognosis of patients (P≤0.05). A total of 129 target genes were found by using Perl software to predict miRNA target genes in four databases: Targetscan, miRDB, miRTarBase and miRPath. The results of GO and KEGG analysis showed that these target genes were closely related to transcription factor activity, signal transduction, FoxO, TNF and other signaling pathways.

Conclusion

Differentially expressed miRNAs between ccRCC and normal tissues were found by bioinformatics analysis. Among them, the hsa-miR-21 and hsa-miR-155 may be associated with patient overall survival and influence the development and progression of ccRCC by regulating the target genes involved in the relevant signaling pathways, suggesting that hsa-miR-21 and hsa-miR-155 could be potential biomarkers for ccRCC.

表1 差异表达的miRNA(TOP 5)
图1 差异表达miRNA热图
图2 差异表达miRNA火山图
图3 hsa-miR-21与hsa-miR-155在ccRCC中的生存曲线
图4 miRNA-Target Genes网络图
图5 靶基因GO分析
图6 靶基因KEGG分析
1
Collins J, Epstein JI. Prognostic significance of extensive necrosis in renal cell carcinoma[J]. Hum Pathol, 2017, 66:108-114.
2
Stone L. Kidney cancer: Activation of oncogenes driven by VHL loss in ccRCC[J]. Nat Rev Urol, 2017, 14(11):637.
3
Aleksandrova K, Bamia C, Drogan D, et al. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European Prospective Investigation into Cancer and Nutrition[J]. Am J Clin Nutr, 2015, 102(6):1498-1508.
4
Di Gioia D, Stieber P, Schmidt GP, et al. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase[J]. Br J Cancer, 2015, 112(5):809-818.
5
Robles AI, Harris CC. Integration of multiple "OMIC" biomarkers: A precision medicine strategy for lung cancer[J]. Lung Cancer, 2017, 107:50-58.
6
Bernardo BC, Ooi JY, Lin RC, et al. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart[J]. Future Med Chem, 2015, 7(13):1771-1792.
7
Chakraborty C, Chin KY, Das S. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis[J]. Tumour Biol, 2016, 37(10):13039-13048.
8
Mcguire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring[J]. Cancer Metastasis Rev, 2015, 34(1):145-155.
9
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer[J]. World J Gastroenterol, 2014, 20(30):10432-10439.
10
Ishimoto T, Sugihara H, Watanabe M, et al. Macrophage-derived reactive Oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation[J]. Carcinogenesis, 2014, 35(5):1003-1011.
11
Shi M, Cui J, Xie K. Signaling of miRNAs-FOXM1 in cancer and potential targeted therapy[J]. Curr Drug Targets, 2013, 14(10):1192-1202.
12
Maachani UB, Tandle A, Shankavaram U, et al. Modulation of miR-21 signaling by MPS1 in human glioblastoma[J]. Oncotarget, 2016, 7(33):52912-52927.
13
Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer[J]. Oncogene, 2014, 33(6):679-689.
14
Cao J, Liu J, Xu R, et al. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells[J]. Mol Med Rep, 2016, 13(1):75-82.
15
Gao Y, Ma X, Yao Y, et al. miR-155 regulates the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2[J]. Oncotarget, 2016, 7(15):20324-20337.
16
Butz H, Nofech-Mozes R, Ding Q, et al. Exosomal MicroRNAs are diagnostic biomarkers and can mediate Cell-Cell communication in renal cell carcinoma[J]. Eur Urol Focus, 2016, 2(2):210-218.
17
Li HL, Han L, Chen HR, et al. PinX1 serves as a potential prognostic indicator for clear cell renal cell carcinoma and inhibits its invasion and metastasis by suppressing MMP-2 via NF-κB-dependent transcription [J]. Oncotarget, 2015, 6(25):21406-21420.
18
Sato Y, Yoshizato T, Shiraishi Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma[J]. Nat Genet, 2013, 45(8):860-U191.
19
Araújo WF, Naves MA, Ravanini JN, et al. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice[J]. Urol Oncol, 2015, 33(9):389.e1-389.e7.
20
Ch'ng WC, Abd-Aziz N, Ong MH, et al. Human renal carcinoma cells respond to Newcastle disease virus infection through activation of the p38 MAPK/NF-κB/IκBα pathway[J]. Cell Oncol (Dordr), 2015, 38(4):279-288.
21
Mikami S, Mizuno R, Kosaka T, et al. Expression of TNF-alpha and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas[J]. Int J Cancer, 2015, 136(7):1504-1514.
22
Guin S, Theodorescu D. The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer[J]. Acta Pharmacol Sin, 2015, 36(3):291-297.
23
Xia P, Zhang R, Ge G. C/EBPβ mediates TNF-α-Induced cancer cell migration by inducing MMP expression dependent on p38 MAPK[J]. J Cell Biochem, 2015, 116(12):2766-2777.
24
Zhang X, Ma L, Qi J, et al. MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy[J]. Mol Cell Biochem, 2015, 410(1/2):101-110.
[1] 张卫平, 王婧玲, 刘志兴, 陈莉, 谌芳群. 肾透明细胞癌高帧频超声造影时间-强度曲线特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 916-922.
[2] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[3] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[4] 刘阳阳, 王梁, 戴志红, 郝建戈, 张力仁, 刘志宇. 腹膜后去分化脂肪肉瘤合并左肾透明细胞癌一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 412-414.
[5] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[6] 邱静, 黄庆. HJURP在肺腺癌组织中高表达并与患者不良预后相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 495-499.
[7] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[8] 谢恩睿, 段一璇, 刘畅, 邓捷. 利用随机森林联合人工神经网络基于外周血细胞易感基因建立冠心病诊断模型[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 19-26.
[9] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[10] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[11] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[12] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[13] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[14] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[15] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
阅读次数
全文


摘要