切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (01) : 53 -58. doi: 10.3877/cma.j.issn.2095-1221.2018.01.010

所属专题: 文献

综述

母体外周血中胎儿有核红细胞的分离和富集方法的研究进展
梁卉1, 陈国杰2, 于燕3, 熊礼宽1,()   
  1. 1. 518100,暨南大学附属深圳市宝安区妇幼保健院中心实验室;518100,深圳市出生缺陷研究重点实验室
    2. 450052,郑州大学附属第一医院消化内科
    3. 518100,暨南大学附属深圳市宝安区妇幼保健院中心产科
  • 收稿日期:2018-01-09 出版日期:2018-02-01
  • 通信作者: 熊礼宽
  • 基金资助:
    深圳市三名工程(SZSM201406007); 深圳市出生缺陷研究重点实验室(ZDSYS201504301707152); 深圳市知识创新计划基础研究项目(JCYJ20130402151000856); 深圳市宝安区医疗卫生基础研究项目(2013063,2014067,2017JD001)

Progress in isolation and enrichment of fetal nucleated read blood cells from maternal peripheral blood

Hui Liang1, Guojie Chen2, Yan Yu3, Likuan Xiong1,()   

  1. 1. Central Laboratory, Bao'an Maternal and Child Health Hospital, Jinan University, Shenzhen 518100, China; Shenzhen Key Laboratory of Birth Defects, Shenzhen 518100, China
    2. Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
    3. Department of Obstetrics, Bao'an Maternal and Child Health Hospital, Jinan University, Shenzhen 518100, China
  • Received:2018-01-09 Published:2018-02-01
  • Corresponding author: Likuan Xiong
  • About author:
    Corresponding author: Xiong likuan, Email:
引用本文:

梁卉, 陈国杰, 于燕, 熊礼宽. 母体外周血中胎儿有核红细胞的分离和富集方法的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(01): 53-58.

Hui Liang, Guojie Chen, Yan Yu, Likuan Xiong. Progress in isolation and enrichment of fetal nucleated read blood cells from maternal peripheral blood[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(01): 53-58.

母体外周血中分离的胎儿有核红细胞(fNRBCs)包含胎儿完整的遗传信息,可用于无创产前诊断。fNRBCs的分离和富集方法主要分为三类:物理分选法、抗原-抗体结合分离法和增殖法。不同的方法获得的fNRBCs的数量和纯度不同,多种方法联合使用可以提高富集产物中fNRBCs的纯度和数量。本文就母体外周血中fNRBCs的分离和富集方法进行综述。

Fetal nucleated red blood cells (fNRBCs) from maternal peripheral blood have the whole genetic information of fetal, which could be used for non-invasive prenatal diagnosis. There are three sorts of methods for isolation and enrichment of fNRBCs: physical separation methods, antigen-antibody-dependent methods, and proliferation methods. The yield and purity vary from different methods. Combination of several methods could improve yield and purity of fNRBCs. In this review, we describe the progress in isolation and enrichment of fNRBCs from maternal peripheral blood.

1
Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer[J]. Lancet Lond Engl, 1969, 1(7606):1119-1122.
2
Breman AM, Chow JC, U'ren L, et al. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing[J]. Prenat Diagn, 2016, 36(11):1009-1019.
3
Bianchi DW, Zickwolf GK, Weil GJ, et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum[J]. Proc Natl Acad Sci U S A, 1996, 93(2):705-708.
4
Belay E, Hayes BJ, Blau CA, et al. Human cord blood and bone marrow CD34+cells generate macrophages that support erythroid islands[J]. PLoS One, 2017, 12(1):e0171096.
5
Manotaya S, Elias S, Lewis DE, et al. Evaluation of a culture system for enrichment of CD34+hematopoietic progenitor cells present in maternal blood[J]. Fetal Diagn Ther, 2002, 17(2):90-96.
6
Choolani M, Mahyuddin AP, Hahn S. The promise of fetal cells in maternal blood[J]. Best Pract Res Clin Obstet Gynaecol, 2012, 26(5):655-667.
7
Lim KH, Salahuddin S, Qiu L, et al. Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: May Lead to noninvasive prenatal diagnosis[J]. Opt Lett, 2009, 34(9):1483-1485.
8
Kaur I, Zulovich JM, Gonzalez M, et al. Comparison of two methodologies for the enrichment of mononuclear cells from thawed cord blood products: The automated Sepax system versus the manual Ficoll method[J]. Cytotherapy, 2017, 19(3):433-439.
9
Emad A, Drouin R. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood[J]. Prenat Diagn, 2014, 34(9):878-885.
10
Smits G, Holzgreve W, Hahn S. An examination of different Percoll density gradients and magnetic activated cell sorting(MACS)for the enrichment of fetal erythroblasts from maternal blood[J]. Arch Gynecol Obstet, 2000, 263(4):160-163.
11
Troeger C, Holzgreve W, Hahn S. A comparison of different density gradients and antibodies for enrichment of fetal erythroblasts by MACS[J]. Prenat Diagn, 1999, 19(6):521-526.
12
Cheng N, Liu F, Zhang LA, et al. Enrichment of nuclear red blood cells by membrane KCC transporter with Urea intervention[J]. J Clin Lab Anal, 2011, 25(1):1-7.
13
Kwon KH, Jeon YJ, Hwang HS, et al. A high yield of fetal nucleated red blood cells isolated using optimal osmolality and a double-density gradient system[J]. Prenat Diagn, 2007, 27(13):1245-1250.
14
Sitar G, Manenti L, Farina A, et al. Characterization of the biophysical properties of human erythroblasts as a preliminary step to the isolation of fetal erythroblasts from maternal peripheral blood for non invasive prenatal genetic investigation[J]. Haematologica, 1997, 82(1):5-10.
15
Andrews K, Wienberg J, Ferguson-Smith MA, et al. Enrichment of fetal nucleated cells from maternal blood:model test system using cord blood[J]. Prenat Diagn, 1995, 15(10):913-919.
16
Al-Mufti R, Hambley H, Farzaneh F, et al. Assessment of efficacy of cell separation techniques used in the enrichment of foetal erythroblasts from maternal blood: triple density gradient vs. single density gradient[J]. Clin Lab Haematol, 2004, 26(2):123-128.
17
Boskabadi H, Zakerihamidi M, Sadeghian M H, et al. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(21):2551-2556.
18
Giambona A, Damiani G, Leto F, et al. Embryo-fetal erythroid cell selection from celomic fluid allows earlier prenatal diagnosis of hemoglobinopathies[J]. Prenat Diagn, 2016, 36(4):375-381.
19
Watanabe A, Sekizawa A, Taguchi A, et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood[J]. Hum Genet, 1998, 102(6):611-615.
20
Sekizawa A, Kimura T, Sasaki M, et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood[J]. Neurology, 1996, 46(5):1350-1353.
21
Liu WY, Jin CL, Liu LY, et al. Detection of fetal nucleated red blood cells in the maternal circulation by Kleihauer test[J]. Yi Chuan, 2007, 29(3):289-292.
22
Nagy GR, Bán Z, Sipos F, et al. Isolation of epsilon-haemoglobin-chain positive fetal cells with micromanipulation for prenatal diagnosis[J]. Prenat Diagn, 2005, 25(5):398-402.
23
Oosterwijk JC, Knepflé CF, Mesker WE, et al. Strategies for rare-event detection:an approach for automated fetal cell detection in maternal blood[J]. Am J Hum Genet, 1998, 63(6):1783-1792.
24
Kolialexi A, Vrettou C, Traeger-Synodinos J, et al. Noninvasive prenatal diagnosis of beta-thalassaemia using individual fetal erythroblasts isolated from maternal blood after enrichment[J]. Prenat Diagn, 2007, 27(13):1228-1232.
25
Collarini EJ, Cain CA, Gammon D, et al. Comparison of methods for erythroblast selection:application to selecting fetal erythroblasts from maternal blood[J]. Cytometry, 2001, 45(4):267-276.
26
Mohamed H, Turner JN, Caggana M. Biochip for separating fetal cells from maternal circulation[J]. J Chromatogr A, 2007, 1162(2):187-192.
27
Huang R, Barber TA, Schmidt MA, et al. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women[J]. Prenat Diagn, 2008, 28(10):892-899.
28
Lee D, Sukumar P, Mahyuddin A, et al. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device[J]. J Chromatogr A, 2010, 1217(11):1862-1866.
29
Byeon Y, Ki CS, Han KH. Isolation of nucleated red blood cells in maternal blood for Non-invasive prenatal diagnosis[J]. Biomed Microdevices, 2015, 17(6):118.
30
Wachtel SS, Sammons D, Twitty G, et al. Charge flow separation: quantification of nucleated red blood cells in maternal blood during pregnancy[J]. Prenat Diagn, 1998, 18(5):455-463.
31
Borgatti M, Bianchi N, Mancini I, et al. New trends in non-invasive prenatal diagnosis: applications of dielectrophoresis-based Lab-on-a-chip platforms to the identification and manipulation of rare cells[J]. Int J Mol Med, 2008, 21(1):3-12.
32
Huber K, Wolf H, Van Lindern M, et al. Development of a rapid means of estimating the haemoglobin F content of candidate fetal cells isolated from maternal blood using HPLC[J]. Prenat Diagn, 1996, 16(11):1011-1019.
33
Zimmermann S, Hollmann C, Stachelhaus SA. Unique monoclonal antibodies specifically bind surface structures on human fetal erythroid blood cells[J]. Exp Cell Res, 2013, 319(17):2700-2707.
34
Zheng SX, Tong XH, Wu LM, et al. A comparison of in vitro culture of fetal nucleated erythroblasts from fetal chorionic villi and maternal peripheral blood for noninvasive prenatal diagnosis[J]. Fetal Diagn Ther, 2012, 32(3):194-200.
35
Kanda E, Yura H, Kitagawa M. Practicability of prenatal testing using lectin-based enrichment of fetal erythroblasts[J]. J Obstet Gynaecol Res, 2016, 42(8):918-926.
36
Jansen MW, von Lindern M, Beug H, et al. The use of in vitro expanded erythroid cells in a model system for the isolation of fetal cells from maternal blood[J]. Prenat Diagn, 1999, 19(4):323-329.
37
Pongsritasana T, Wongratanacheewin S, Prasertcharoensuk V, et al. Isolation of fetal nucleated red blood cell from maternal blood using immunomagnetic beads for prenatal diagnosis[J]. Asian Pac J Allergy Immunol, 2006, 24(1):65-71.
38
Giambona A, Leto F, Damiani G, et al. Identification of embryo-fetal cells in celomic fluid using morphological and short-tandem repeats analysis[J]. Prenat Diagn, 2016, 36(10):973-978.
39
D'souza E, Sawant PM, Nadkarni AH, et al. Evaluation of the use of monoclonal antibodies and nested PCR for noninvasive prenatal diagnosis of hemoglobinopathies in India[J]. Am J Clin Pathol, 2008, 130(2):202-209.
40
D'souza E. Ghosh K, colah R. A comparison of the choice of monoclonal antibodies for recovery of fetal cells from maternal blood using FACS for noninvasive prenatal diagnosis of hemoglobinopathies[J]. Cytometry B Clin Cytom, 2009, 76(3):175-180.
41
D'souza E, Kulkarni S, Colah RB, et al. An improved flow cytometric approach for isolation of fetal cells from maternal blood for non invasive prenatal diagnosis of hemoglobinopathies[J]. Hemoglobin, 2007, 31(1):39-48.
42
Babochkina T, Mergenthaler S, Lapaire O, et al. Evaluation of a soybean lectin-based method for the enrichment of erythroblasts[J]. J Histochem Cytochem, 2005, 53(3):329-330.
43
Han JY, Je GH, Kim IH, et al. Culture of fetal erythroid cells from maternal blood using a two-phase liquid system[J]. Am J Med Genet, 1999, 87(1):84-85.
44
Huber K, Bittner J, Worofka B, et al. Quantitative FISH analysis and in vitro suspension cultures of erythroid cells from maternal peripheral blood for the isolation of fetal cells[J]. Prenat Diagn, 2000, 20(6):479-486.
45
Huang Z, Fong CY, Gauthaman K, et al. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child[J]. J Cell Biochem, 2011, 112(6):1475-1485.
46
Ai-Mufti R, Hambley H, Farzaneh F, et al. Distribution of fetal erythroblasts in maternal blood after chorionic villous sampling[J]. BJOG, 2003, 110(1):33-38.
47
Purwosunu Y, Sekizawa A, Farina A, et al. Enrichment of NRBC in maternal blood:a more feasible method for noninvasive prenatal diagnosis[J]. Prenat Diagn, 2006, 26(6):545-547.
48
Ponnusamy S, Mohammed N, Ho SS, et al. In vivo model to determine fetal-cell enrichment efficiency of novel noninvasive prenatal diagnosis methods[J]. Prenat Diagn, 2008, 28(6):494-502.
49
Fournier D, Simard C, Cloutier M, et al. Implementing a routine flow cytometry assay for nucleated red blood cell counts in cord blood units[J]. Transfusion, 2015, 55(3, SI):49A-50A.
50
Beaudet AL. Using fetal cells for prenatal diagnosis: history and recent progress[J]. Am J Med Genet C Semin Med Genet, 2016, 172(2, SI):123-127.
[1] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[2] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[3] 杜祖升, 赵博文, 张帧, 潘美, 彭晓慧, 陈冉, 毛彦恺. 应用二维斑点追踪成像技术评估孕周及心尖方向对中晚孕期正常胎儿左心房应变的影响[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 843-851.
[4] 张商迪, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳, 袁华, 陈燕. 中晚孕期胎儿心房内径定量评估心房比例失调胎儿心脏畸形的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 785-793.
[5] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[6] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[7] 曾晴, 文华轩, 袁鹰, 廖伊梅, 秦越, 罗丹丹, 梁美玲, 李胜利. 经腹二维超声评价胎儿大脑外侧裂的新参数——外侧裂平台角度[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 454-459.
[8] 王水清, 赵博文, 潘美, 彭晓慧, 陈冉, 马明明, 狄敏. 16~40周正常胎儿左心房后间隙指数及其Z评分的定量研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 460-469.
[9] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[10] 张帧, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 陈阳. 二维斑点追踪技术评价正常中晚孕期胎儿右心房功能的初步研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 384-390.
[11] 王濛, 王華麟, 王鉴, 孙锟. 先天性心脏病宫内诊疗现状与展望[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 481-485.
[12] 仲卫冬, 胡根, 邵国益. 腹腔开放合并肠空气瘘的管理[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 462-462.
[13] 王苏睿, 胡根, 邵国益. A 型肉毒杆菌毒素在腹腔开放后腹壁缺损修复中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 649-653.
[14] 赵小欢, 尚志英, 段文超, 张晓燕, 孙东强. 无创通气治疗COPD 并发呼吸衰竭不同预后患者外周血MicroRNA及炎性因子水平分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 777-780.
[15] 燕红玲, 王岩岩, 陈树斌. PCT、NLR联合LUBS预测ICU CRKP致呼吸机相关肺炎撤机及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 617-620.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?