切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (01) : 53 -58. doi: 10.3877/cma.j.issn.2095-1221.2018.01.010

所属专题: 文献

综述

母体外周血中胎儿有核红细胞的分离和富集方法的研究进展
梁卉1, 陈国杰2, 于燕3, 熊礼宽1,()   
  1. 1. 518100,暨南大学附属深圳市宝安区妇幼保健院中心实验室;518100,深圳市出生缺陷研究重点实验室
    2. 450052,郑州大学附属第一医院消化内科
    3. 518100,暨南大学附属深圳市宝安区妇幼保健院中心产科
  • 收稿日期:2018-01-09 出版日期:2018-02-01
  • 通信作者: 熊礼宽
  • 基金资助:
    深圳市三名工程(SZSM201406007); 深圳市出生缺陷研究重点实验室(ZDSYS201504301707152); 深圳市知识创新计划基础研究项目(JCYJ20130402151000856); 深圳市宝安区医疗卫生基础研究项目(2013063,2014067,2017JD001)

Progress in isolation and enrichment of fetal nucleated read blood cells from maternal peripheral blood

Hui Liang1, Guojie Chen2, Yan Yu3, Likuan Xiong1,()   

  1. 1. Central Laboratory, Bao'an Maternal and Child Health Hospital, Jinan University, Shenzhen 518100, China; Shenzhen Key Laboratory of Birth Defects, Shenzhen 518100, China
    2. Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
    3. Department of Obstetrics, Bao'an Maternal and Child Health Hospital, Jinan University, Shenzhen 518100, China
  • Received:2018-01-09 Published:2018-02-01
  • Corresponding author: Likuan Xiong
  • About author:
    Corresponding author: Xiong likuan, Email:
引用本文:

梁卉, 陈国杰, 于燕, 熊礼宽. 母体外周血中胎儿有核红细胞的分离和富集方法的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(01): 53-58.

Hui Liang, Guojie Chen, Yan Yu, Likuan Xiong. Progress in isolation and enrichment of fetal nucleated read blood cells from maternal peripheral blood[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(01): 53-58.

母体外周血中分离的胎儿有核红细胞(fNRBCs)包含胎儿完整的遗传信息,可用于无创产前诊断。fNRBCs的分离和富集方法主要分为三类:物理分选法、抗原-抗体结合分离法和增殖法。不同的方法获得的fNRBCs的数量和纯度不同,多种方法联合使用可以提高富集产物中fNRBCs的纯度和数量。本文就母体外周血中fNRBCs的分离和富集方法进行综述。

Fetal nucleated red blood cells (fNRBCs) from maternal peripheral blood have the whole genetic information of fetal, which could be used for non-invasive prenatal diagnosis. There are three sorts of methods for isolation and enrichment of fNRBCs: physical separation methods, antigen-antibody-dependent methods, and proliferation methods. The yield and purity vary from different methods. Combination of several methods could improve yield and purity of fNRBCs. In this review, we describe the progress in isolation and enrichment of fNRBCs from maternal peripheral blood.

1
Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer[J]. Lancet Lond Engl, 1969, 1(7606):1119-1122.
2
Breman AM, Chow JC, U'ren L, et al. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing[J]. Prenat Diagn, 2016, 36(11):1009-1019.
3
Bianchi DW, Zickwolf GK, Weil GJ, et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum[J]. Proc Natl Acad Sci U S A, 1996, 93(2):705-708.
4
Belay E, Hayes BJ, Blau CA, et al. Human cord blood and bone marrow CD34+cells generate macrophages that support erythroid islands[J]. PLoS One, 2017, 12(1):e0171096.
5
Manotaya S, Elias S, Lewis DE, et al. Evaluation of a culture system for enrichment of CD34+hematopoietic progenitor cells present in maternal blood[J]. Fetal Diagn Ther, 2002, 17(2):90-96.
6
Choolani M, Mahyuddin AP, Hahn S. The promise of fetal cells in maternal blood[J]. Best Pract Res Clin Obstet Gynaecol, 2012, 26(5):655-667.
7
Lim KH, Salahuddin S, Qiu L, et al. Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: May Lead to noninvasive prenatal diagnosis[J]. Opt Lett, 2009, 34(9):1483-1485.
8
Kaur I, Zulovich JM, Gonzalez M, et al. Comparison of two methodologies for the enrichment of mononuclear cells from thawed cord blood products: The automated Sepax system versus the manual Ficoll method[J]. Cytotherapy, 2017, 19(3):433-439.
9
Emad A, Drouin R. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood[J]. Prenat Diagn, 2014, 34(9):878-885.
10
Smits G, Holzgreve W, Hahn S. An examination of different Percoll density gradients and magnetic activated cell sorting(MACS)for the enrichment of fetal erythroblasts from maternal blood[J]. Arch Gynecol Obstet, 2000, 263(4):160-163.
11
Troeger C, Holzgreve W, Hahn S. A comparison of different density gradients and antibodies for enrichment of fetal erythroblasts by MACS[J]. Prenat Diagn, 1999, 19(6):521-526.
12
Cheng N, Liu F, Zhang LA, et al. Enrichment of nuclear red blood cells by membrane KCC transporter with Urea intervention[J]. J Clin Lab Anal, 2011, 25(1):1-7.
13
Kwon KH, Jeon YJ, Hwang HS, et al. A high yield of fetal nucleated red blood cells isolated using optimal osmolality and a double-density gradient system[J]. Prenat Diagn, 2007, 27(13):1245-1250.
14
Sitar G, Manenti L, Farina A, et al. Characterization of the biophysical properties of human erythroblasts as a preliminary step to the isolation of fetal erythroblasts from maternal peripheral blood for non invasive prenatal genetic investigation[J]. Haematologica, 1997, 82(1):5-10.
15
Andrews K, Wienberg J, Ferguson-Smith MA, et al. Enrichment of fetal nucleated cells from maternal blood:model test system using cord blood[J]. Prenat Diagn, 1995, 15(10):913-919.
16
Al-Mufti R, Hambley H, Farzaneh F, et al. Assessment of efficacy of cell separation techniques used in the enrichment of foetal erythroblasts from maternal blood: triple density gradient vs. single density gradient[J]. Clin Lab Haematol, 2004, 26(2):123-128.
17
Boskabadi H, Zakerihamidi M, Sadeghian M H, et al. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(21):2551-2556.
18
Giambona A, Damiani G, Leto F, et al. Embryo-fetal erythroid cell selection from celomic fluid allows earlier prenatal diagnosis of hemoglobinopathies[J]. Prenat Diagn, 2016, 36(4):375-381.
19
Watanabe A, Sekizawa A, Taguchi A, et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood[J]. Hum Genet, 1998, 102(6):611-615.
20
Sekizawa A, Kimura T, Sasaki M, et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood[J]. Neurology, 1996, 46(5):1350-1353.
21
Liu WY, Jin CL, Liu LY, et al. Detection of fetal nucleated red blood cells in the maternal circulation by Kleihauer test[J]. Yi Chuan, 2007, 29(3):289-292.
22
Nagy GR, Bán Z, Sipos F, et al. Isolation of epsilon-haemoglobin-chain positive fetal cells with micromanipulation for prenatal diagnosis[J]. Prenat Diagn, 2005, 25(5):398-402.
23
Oosterwijk JC, Knepflé CF, Mesker WE, et al. Strategies for rare-event detection:an approach for automated fetal cell detection in maternal blood[J]. Am J Hum Genet, 1998, 63(6):1783-1792.
24
Kolialexi A, Vrettou C, Traeger-Synodinos J, et al. Noninvasive prenatal diagnosis of beta-thalassaemia using individual fetal erythroblasts isolated from maternal blood after enrichment[J]. Prenat Diagn, 2007, 27(13):1228-1232.
25
Collarini EJ, Cain CA, Gammon D, et al. Comparison of methods for erythroblast selection:application to selecting fetal erythroblasts from maternal blood[J]. Cytometry, 2001, 45(4):267-276.
26
Mohamed H, Turner JN, Caggana M. Biochip for separating fetal cells from maternal circulation[J]. J Chromatogr A, 2007, 1162(2):187-192.
27
Huang R, Barber TA, Schmidt MA, et al. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women[J]. Prenat Diagn, 2008, 28(10):892-899.
28
Lee D, Sukumar P, Mahyuddin A, et al. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device[J]. J Chromatogr A, 2010, 1217(11):1862-1866.
29
Byeon Y, Ki CS, Han KH. Isolation of nucleated red blood cells in maternal blood for Non-invasive prenatal diagnosis[J]. Biomed Microdevices, 2015, 17(6):118.
30
Wachtel SS, Sammons D, Twitty G, et al. Charge flow separation: quantification of nucleated red blood cells in maternal blood during pregnancy[J]. Prenat Diagn, 1998, 18(5):455-463.
31
Borgatti M, Bianchi N, Mancini I, et al. New trends in non-invasive prenatal diagnosis: applications of dielectrophoresis-based Lab-on-a-chip platforms to the identification and manipulation of rare cells[J]. Int J Mol Med, 2008, 21(1):3-12.
32
Huber K, Wolf H, Van Lindern M, et al. Development of a rapid means of estimating the haemoglobin F content of candidate fetal cells isolated from maternal blood using HPLC[J]. Prenat Diagn, 1996, 16(11):1011-1019.
33
Zimmermann S, Hollmann C, Stachelhaus SA. Unique monoclonal antibodies specifically bind surface structures on human fetal erythroid blood cells[J]. Exp Cell Res, 2013, 319(17):2700-2707.
34
Zheng SX, Tong XH, Wu LM, et al. A comparison of in vitro culture of fetal nucleated erythroblasts from fetal chorionic villi and maternal peripheral blood for noninvasive prenatal diagnosis[J]. Fetal Diagn Ther, 2012, 32(3):194-200.
35
Kanda E, Yura H, Kitagawa M. Practicability of prenatal testing using lectin-based enrichment of fetal erythroblasts[J]. J Obstet Gynaecol Res, 2016, 42(8):918-926.
36
Jansen MW, von Lindern M, Beug H, et al. The use of in vitro expanded erythroid cells in a model system for the isolation of fetal cells from maternal blood[J]. Prenat Diagn, 1999, 19(4):323-329.
37
Pongsritasana T, Wongratanacheewin S, Prasertcharoensuk V, et al. Isolation of fetal nucleated red blood cell from maternal blood using immunomagnetic beads for prenatal diagnosis[J]. Asian Pac J Allergy Immunol, 2006, 24(1):65-71.
38
Giambona A, Leto F, Damiani G, et al. Identification of embryo-fetal cells in celomic fluid using morphological and short-tandem repeats analysis[J]. Prenat Diagn, 2016, 36(10):973-978.
39
D'souza E, Sawant PM, Nadkarni AH, et al. Evaluation of the use of monoclonal antibodies and nested PCR for noninvasive prenatal diagnosis of hemoglobinopathies in India[J]. Am J Clin Pathol, 2008, 130(2):202-209.
40
D'souza E. Ghosh K, colah R. A comparison of the choice of monoclonal antibodies for recovery of fetal cells from maternal blood using FACS for noninvasive prenatal diagnosis of hemoglobinopathies[J]. Cytometry B Clin Cytom, 2009, 76(3):175-180.
41
D'souza E, Kulkarni S, Colah RB, et al. An improved flow cytometric approach for isolation of fetal cells from maternal blood for non invasive prenatal diagnosis of hemoglobinopathies[J]. Hemoglobin, 2007, 31(1):39-48.
42
Babochkina T, Mergenthaler S, Lapaire O, et al. Evaluation of a soybean lectin-based method for the enrichment of erythroblasts[J]. J Histochem Cytochem, 2005, 53(3):329-330.
43
Han JY, Je GH, Kim IH, et al. Culture of fetal erythroid cells from maternal blood using a two-phase liquid system[J]. Am J Med Genet, 1999, 87(1):84-85.
44
Huber K, Bittner J, Worofka B, et al. Quantitative FISH analysis and in vitro suspension cultures of erythroid cells from maternal peripheral blood for the isolation of fetal cells[J]. Prenat Diagn, 2000, 20(6):479-486.
45
Huang Z, Fong CY, Gauthaman K, et al. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child[J]. J Cell Biochem, 2011, 112(6):1475-1485.
46
Ai-Mufti R, Hambley H, Farzaneh F, et al. Distribution of fetal erythroblasts in maternal blood after chorionic villous sampling[J]. BJOG, 2003, 110(1):33-38.
47
Purwosunu Y, Sekizawa A, Farina A, et al. Enrichment of NRBC in maternal blood:a more feasible method for noninvasive prenatal diagnosis[J]. Prenat Diagn, 2006, 26(6):545-547.
48
Ponnusamy S, Mohammed N, Ho SS, et al. In vivo model to determine fetal-cell enrichment efficiency of novel noninvasive prenatal diagnosis methods[J]. Prenat Diagn, 2008, 28(6):494-502.
49
Fournier D, Simard C, Cloutier M, et al. Implementing a routine flow cytometry assay for nucleated red blood cell counts in cord blood units[J]. Transfusion, 2015, 55(3, SI):49A-50A.
50
Beaudet AL. Using fetal cells for prenatal diagnosis: history and recent progress[J]. Am J Med Genet C Semin Med Genet, 2016, 172(2, SI):123-127.
[1] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[2] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[3] 赵红娟, 赵博文, 潘美, 纪园园, 彭晓慧, 陈冉. 应用多普勒超声定量分析正常中晚孕期胎儿左心室收缩舒张时间指数[J]. 中华医学超声杂志(电子版), 2023, 20(09): 951-958.
[4] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[5] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[6] 徐鹏, 李军, 高巍伦, 王峥, 庞珅, 李春妮, 朱霆. 快速旋转扫查法在胎儿超声心动图检查中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 761-766.
[7] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[8] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[9] 黄佳, 石华, 张玉国, 胡佳琪, 陈茜. 胎儿左头臂静脉正常与异常超声图像特征及其临床意义[J]. 中华医学超声杂志(电子版), 2023, 20(06): 610-617.
[10] 袁泽, 庄丽. 超声检测胎儿脐动脉和大脑中动脉血流对胎儿宫内窘迫的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 618-621.
[11] 刘镭, 杨昕, 许晓华, 林胜谋, 熊初琴, 农丽录, 董振宇, 李胜利. 中孕期胎儿鼻前皮肤厚度及鼻骨长度筛查胎儿染色体病的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 506-510.
[12] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[13] 薛超, 张烨, 赵映, 韩建成, 谷孝艳, 孙琳, 刘晓伟, 宋伟, 何怡华. 胎儿先天性肺动脉瓣缺如综合征的超声特征及预后分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 410-418.
[14] 李炳根, 龚独辉, 赖泽如, 聂向阳. 产后腹直肌分离全腔镜下肌后/腹膜外补片修补术的临床研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 724-727.
[15] 李燕, 姚毅冰, 毛志远, 于海燕, 刘昕, 樊再雯. NCAPH在肺鳞癌中表达的临床意义及与免疫微环境浸润的关系[J]. 中华临床医师杂志(电子版), 2023, 17(04): 446-454.
阅读次数
全文


摘要