切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (01) : 39 -48. doi: 10.3877/cma.j.issn.2095-1221.2018.01.008

所属专题: 文献

综述

间充质干细胞在恶性肿瘤生物学中作用的研究进展
林婷婷1, 任群1   
  1. 1. 350025 福州,厦门大学附属东方医院(南京军区福州总医院)福建省移植生物学重点实验室
  • 收稿日期:2017-10-26 出版日期:2018-02-01
  • 基金资助:
    国家自然科学基金面上项目(81772848); 福建省自然科学基金面上项目(2016J01577)

Progress in role of mesenchymal stem cells in tumor biology

Tingting Lin1, Qun Ren1   

  1. 1. Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou 350025, China
  • Received:2017-10-26 Published:2018-02-01
  • About author:
    Corresponding author: Wang Shuiliang, Email:
引用本文:

林婷婷, 任群. 间充质干细胞在恶性肿瘤生物学中作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(01): 39-48.

Tingting Lin, Qun Ren. Progress in role of mesenchymal stem cells in tumor biology[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(01): 39-48.

过去近半个世纪的研究表明,间充质干细胞(MSCs)作为肿瘤微环境中细胞成份的重要成员之一,它在肿瘤细胞生长增殖、凋亡调控、侵袭性生长和转移、血管新生、能量代谢以及治疗抗性等诸多恶性生物学特性中均发挥重要的生物学作用,其相关的分子机制也逐步被揭示;相应地,基于这些发现的基因工程修饰和物理(化学)预处理的MSCs在特定肿瘤综合治疗中临床应用研究也取得了令人振奋的结果。本文就目前MSCs在恶性肿瘤发生发展中所起的生物学作用及其分子机制研究的相关进展作一综述,并就未来MSCs相关的新研究方向及其肿瘤综合治疗中可能的临床应用作一简单的展望。

During the last half a century, studies have shown that mesenchymal stem cells (MSCs), one of the important cellular components in tumor microenvironment, play important roles in multiple hallmarks of cancer including cell growth, proliferation, apoptosis, invasion and metastasis, angiogenesis, energy metabolism and treatment resistance. Meanwhile, the underlying molecular mechanisms have gradually been revealed. Accordingly, based on these new findings, research regarding the possible clinical application of MSCs with genetic modification and/or physical/chemical pre-treatment in systematic treatment of cancer have yielded impressing results. In this review, we summarized the current advances in biological roles of MSCs in the tumorigenesis and progression of the malignant tumor and the correlated molecular mechanisms. The new research horizons and the possible clinical application of MSCs in cancer therapy are also prospected.

图1 间充质干细胞参与调控的肿瘤恶性生物学特性
1
Hanahan D, Weinberg RA. Hallmarks of cancer: the next Generation[J]. Cell, 2011, 144(5):646-674.
2
Shi Y, Du L, Lin L, et al. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16(1):35-52.
3
陈强星,张剑. 间充质干细胞免疫调节作用的研究进展[J]. 器官移植, 2016, 7(6):484-489.
4
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue kinet, 1970, 3(4):393-403.
5
Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5):641-650.
6
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
7
Caplan AI. Mesenchymal stem cells:time to change the Name![J]. Stem Cells Transl Med, 2017, 6(6):1445-1451.
8
陈津. 间充质(干)细胞的定义变迁[J/CD]. 中华细胞与干细胞杂志:电子版, 2017, 7(4):247-250.
9
De Boeck A, Pauwels P, Hensen K, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling[J]. Gut, 2013, 62(4): 550-560.
10
左伟敏,祝玲,林婷婷, 等. 间充质干细胞促进Luminal B型乳腺癌细胞生长增殖及其分子机理初探[J/CD]. 中华细胞与干细胞杂志:电子版, 2016, 6(4):228-235.
11
Roccaro AM, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. J Clin Invest, 2013, 123(4):1542-1555.
12
Abdul-Aziz AM, Shafat MS, Mehta TK, et al. MIF-Induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia[J]. Cancer Res, 2017, 77(2): 303-311.
13
Ren G, Zhao X, Wang Y, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα[J]. Cell Stem Cell, 2012, 11(6):812-824.
14
Borriello L, Nakata R, Sheard MA, et al. Cancer-Associated fibroblasts share characteristics and pro-tumorigenic activity with mesenchymal stromal cells[J]. Cancer Res 2017, 77(18): 5142-5157.
15
Barcellos-De-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal stem cells are recruited and activated into Carcinoma-Associated fibroblasts by prostate cancer Microenvironment-Derived TGF-1[J]. Stem Cells, 2016, 34(10):2536-2547.
16
Liu T, Zhu K, Ke C, et al. Mesenchymal stem cells inhibited development of lung cancer induced by chemical carcinogens in a rat model[J]. Am J Transl Res, 2017, 9(6):2891.
17
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nat Rev Cancer, 2009, 9(3):153-166.
18
Cotter TG. Apoptosis and cancer: the Genesis of a research field[J]. Nat Rev Cancer, 2009, 9(7):501-507.
19
Jackson SP, Bartek J. The DNA-damage response in human biology and disease[J]. Nature, 2009, 461(7267):1071-1078.
20
Lee RH, Yoon N, Reneau JC, et al. Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity[J]. Cell Stem Cell, 2012, 11(6): 825-835.
21
Reza AM, Choi YJ, Yasuda H, et al. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells[J]. Sci Rep, 2016,6: 38498.
22
Bruna F, Arango-Rodriguez M, Plaza AA, et al. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma[J]. Stem Cell Res, 2017, 18: 5-13.
23
Rankin EB, Giaccia AJ. Hypoxic control of metastasis[J]. Science, 2016, 352(6282):175-180.
24
Turajlic S, Swanton C. Metastasis as an evolutionary process[J]. Science, 2016, 352(6282): 169-175.
25
Joyce JA, Pollard JW. Microenvironmental regulation of metastasis[J]. Nat Revs Cancer, 2009, 9(4): 239-252.
26
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J]. Nature, 2007, 449(7162): 557-563.
27
Mcandrews KM, Mcgrail DJ, Ravikumar NA. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β[J]. Sci Rep, 2015, 5: 16941.
28
Yu PF, Huang Y, Xu CL, et al. Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis[J]. Oncogene, 2017, 36(6): 840-849.
29
Conklin MW, Eickhoff JC, Riching KM, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma[J]. Am J Pathol, 2011, 178(3): 1221-1232.
30
Corsa CA, Brenot A, Grither WR, et al. The action of discoidin domain receptor 2 in basal tumor cells and stromal Cancer-Associated fibroblasts is critical for breast cancer metastasis[J]. Cell Rep, 2016, 15(11): 2510-2523.
31
Gonzalez ME, Martin EE, Anwar TA, et al. Mesenchymal stem Cell-Induced DDR2 mediates Stromal-Breast cancer interactions and metastasis growth[J]. Cell Rep, 2017, 18(5): 1215-1228.
32
Wu YL, Li HY, Zhao XP, et al. Mesenchymal stem cell-derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells[J]. Cancer Sci, 2017, 108(5): 897-909.
33
Jiang CM, Zhang QZ, Shanti RM, et al. Mesenchymal stromal Cell-Derived interleukin-6 promotes Epithelial-Mesenchymal transition and acquisition of epithelial Stem-Like cell properties in ameloblastoma epithelial cells[J]. Stem Cells, 2017, 35(9): 2083-2094.
34
Sohara Y, Shimada H, Declerck YA. Mechanisms of bone invasion and metastasis in human neuroblastoma[J]. Cancer Lett, 2005, 228(1-2): 203-209.
35
Ara T, Song L, Shimada H, et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells[J]. Cancer Res, 2009, 69(1): 329-337.
36
Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization[J]. Nat Rev Cancer, 2009, 9(4): 274-284.
37
Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis;what is special about bone[J]. Cancer Metastasis Rev, 2008, 27(1): 41-55.
38
Hosseini H, Obradovic MM, Hoffmann M, et al. Early dissemination seeds metastasis in breast cancer[J]. Nature, 2016, 540(7634): 552.
39
Harper KL, Sosa MS, Entenberg DA, et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer[J]. Nature, 2016, 540(7634): 588-592.
40
Gazdic M, Markovic BS, Jovicic NA, et al. Mesenchymal stem cells promote metastasis of lung cancer cells by downregulating systemic antitumor immune response[J]. Stem cells Int, 2017:1-11.
41
Yu PF, Huang Y, Han YY, et al. TNFα activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2(+) neutrophils[J]. Oncogene, 2017, 36(4): 482-490.
42
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic Switch during tumorigenesis[J]. Cell, 1996, 86(3): 353-364.
43
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic Switch[J]. Nat Rev Cancer, 2003, 3(6): 401-410.
44
Fraisl P, Mazzone M, Schmidt TA. Regulation of angiogenesis by Oxygen and metabolism[J]. Dev Cell, 2009, 16(2): 167-179.
45
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response[J]. Nat Rev Cancer, 2008, 8(6): 425-437.
46
Cabrita MA, Christofori G. Sprouty proteins, masterminds of receptor tyrosine kinase signaling[J]. Angiogenesis, 2008, 11(1): 53-62.
47
Ciria M, Garcia NA, Ontoria-Oviedo I, et al. Mesenchymal stem cell migration and proliferation are mediated by Hypoxia-Inducible factor-1 upstream of Notch and SUMO pathways[J]. Stem Cells and Dev, 2017, 26(13): 973-985.
48
Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1 potentiates Jagged 1-Mediated angiogenesis by mesenchymal stem Cell-Derived exosomes[J]. Stem Cells, 2017, 35(7): 1747-1759.
49
Gong M, Yu B, Wang JC, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28): 45200-45212.
50
Lee JK, Park SR, Jung BK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells[J]. PLOS One, 2013, 8(12): e84256.
51
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1 alpha/VEGF signaling axis in breast cancer cells[J]. Cellular Oncol, 2017, 40(5): 457-470.
52
Motegi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth[J]. J Dermatol Sci, 2017, 86(2): 83-89.
53
Yamada K, Uchiyama A, Uehara A, et al. MFG-E8 drives melanoma growth by stimulating mesenchymal stromal Cell-Induced angiogenesis and M2 polarization of Tumor-Associated macrophages[J]. Cancer Res, 2016, 76(14): 4283-4292.
54
韩昌敏,张雷,吴启龙, 等. 间充质干细胞对肿瘤血管生成的影响[J/CD]. 中华细胞与干细胞杂志:电子版, 2016, 6(4):252-257.
55
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337.
56
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism[J]. Nat Rev Cancer, 2011, 11(2): 85-95.
57
Kennedy KM, Dewhirst MW. Tumor metabolism of lactate:the influence and therapeutic potential for MCT and CD147 regulation[J]. Future Oncol, 2010, 6(1):127-148.
58
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate[J]. Cancer Cell, 2012, 21(3): 297-308.
59
Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme[J]. Science, 2008, 321(5897): 1807-1812.
60
Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567.
61
Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour[J]. NatRev Cancer, 2008, 8(9):705-713.
62
Krstic J, Trivanovic D, Jaukovic A, et al. Metabolic plasticity of stem cells and macrophages in cancer[J]. Front Immunol, 2017, 8: 939.
63
Fiaschi T, Marini A, Giannoni E, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay[J]. Cancer Res, 2012, 72(19): 5130-5140.
64
Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma[J]. Cell cycle, 2009, 8(23): 3984-4001.
65
Chiarugi P, Cirri P. Metabolic exchanges within tumor microenvironment[J]. Cancer Lett, 2016, 380(1): 272-280.
66
Bonuccelli G, Avnet S, Grisendi G, et al. Role of mesenchymal stem cells in osteosarcoma and metabolic repro-gramming of tumor cells[J]. Oncotarget, 2014, 5(17): 7575-7588.
67
Samudio I, Fiegl M, Mcqueen T, et al. The warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation[J]. Cancer Res, 2008, 68(13): 5198-5205.
68
Ohkouchi S, Block GJ, Katsha AM, et al. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the warburg effect by secreting STC1[J]. Mol Ther, 2012, 20(2): 417-423.
69
Fridman WH, Pagès F, Sautès-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306.
70
Casey SC, Tong L, Li YL, et al. MYC regulates the antitumor immune response through CD47 and PD-L1[J]. Science, 2016, 352(6282): 227-231.
71
Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape[J]. Sci Transl Med, 2012, 4(127):127ra37.
72
Wang Y, Chen XD, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications[J]. Nat Immunol, 2014, 15(11): 1009-1016.
73
Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer[J]. Trends Cell Bio, 2015, 25(4): 198-213.
74
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response[J]. Immunol Lett, 2015, 168(2): 140-146.
75
Glenn JD, Whartenby KA. Mesenchymal stem cells:Emerging mechanisms of immunomodulation and therapy[J]. World J stem cells, 2014, 6(5): 526-539.
76
Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial[J]. JAMA, 2012, 307(11): 1169-1177.
77
Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells[J]. Blood, 2007, 110(10): 3499-3506.
78
Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[J]. Cell Stem Cell, 2008, 2(2): 141-150.
79
Patel S, Meyer JR, Greco SJ, et al. Mesenchymal stem cells protect breast cancer cells through regulatory T cells:role of mesenchymal stem cell-derived TGF-beta[J]. J Immunol, 2010, 184(10): 5885-5894.
80
Ling W, Zhang J, Yuan Z, et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment[J]. Cancer Res, 2014, 74(5): 1576-1587.
81
Fechter K, Dorronsoro A, Jakobsson E, et al. IFNγ regulates activated Vδ2+T cells through a feedback mechanism mediated by mesenchymal stem cells[J]. PLoS One, 2017, 12(1): e0169362.
82
Ghosh T, Barik S, Bhuniya A, et al. Tumor-associated mesenchymal stem cells inhibit naive T cell expansion by blocking cysteine export from dendritic cells[J]. Int J Cancer, 2016, 139(9): 2068-2081.
83
Bruzzese L, Fromonot J, By Y, et al. NFκB enhances hypoxiadriven T-cell immunosuppression via upregulation of adenosine A(2A)receptors[J]. Cellular Signal, 2014, 26(5):1060-1067.
84
Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer[J]. Oncogene, 2010, 29(39):5346-5358.
85
De LM, Garcíarocha R, Moralesramírez O, et al. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions[J]. J Transl Med, 2016, 14(1):302.
86
Schuler PJ, Westerkamp AM, Kansy BA, et al. Adenosine metabolism of human mesenchymal stromal cells isolated from patients with head and neck squamous cell carcinoma[J]. Immunobiology, 2017, 222(1): 66-74.
87
Lin R, Ma H, Ding Z, et al. Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer[J]. Stem Cells Dev, 2013, 22(21): 2836-2848.
88
Hsu WT, Lin CH, Chian BL, et al. Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-γ+CD4+regulatory T cells to control transplant arteriosclerosis[J]. J Immunol, 2013, 190(5): 2372-2380.
89
Rashedi I, Gómez-Aristizábal A, Wang XH, et al. TLR3 or TLR4 activation enhances mesenchymal stromal Cell-Mediated Treg induction via Notch signaling[J]. Stem Cells, 2017, 35(1): 265-275.
90
Chiossone L, Conte R, Spaggiari GM, et al. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses[J]. Stem Cells, 2016, 34(7): 1909-1921.
91
Shou P, Chen Q, Jiang J, et al. Type I interferons exert anti-tumor effect via reversing immunosuppression mediated by mesenchymal stromal cells[J]. Oncogene, 2016, 35(46): 5953-5962.
92
Choi SH, Stuckey DW, Pignatta S, et al. Tumor resection boosts therapeutic efficacy of encapsulated stem cells expressing a highly secretable variant of interferon-β in glioblastomas[J]. Clinical Cancer Res, 201723(22): 7047-7058.
93
Li W, Ren G, Huang Y, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses[J]. Cell Death and Differ, 2012, 19(9):1505-1513.
94
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age[J]. Nature, 2011, 480(7378): 480-489.
95
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
96
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
97
Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm[J]. Nat Rev Cancer, 2013, 13(10): 714-726.
98
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview[J]. Cancers, 2014, 6(3): 1769-1792.
99
Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer[J]. Crit Rev Biotechnol, 2016, 36(4): 716-726.
100
Mcmillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities[J]. Nat Rev Drug Discov, 2013, 12(3): 217-228.
101
Maj M, Bajek A, Nalejska E, et al. Influence of mesenchymal stem cells conditioned media on proliferation of urinary tract cancer cell lines and their sensitivity to ciprofloxacin[J]. J Cell Biochem, 2017, 118(6): 1361-1368.
102
Tian C, Zheng G, Zhuang H, et al. Microrna-494 activation suppresses bone marrow stromal Cell-Mediated drug resistance in acute myeloid leukemia cells[J]. J Cell Physiol, 2017, 232(6): 1387-1395.
103
Chen DR, Lu DY, Lin HY, et al. Mesenchymal stem Cell-Induced doxorubicin resistance in triple negative breast cancer[J]. BioMed Red Int, 2014(13): 532161.
104
Han Z, Jing Y, Xia Y, et al. Mesenchymal stem cells contribute to the chemoresistance of hepatocellular carcinoma cells in inflammatory environment by inducing autophagy[J]. Cell Biosci, 2014, 4(1): 22.
105
Yang H, Zheng Y, Zhang Y, et al. Mesenchymal stem cells derived from multiple myeloma patients protect against chemotherapy through autophagy-dependent activation of NF-κB signaling[J]. Leuk Res, 2017, 60: 82-88.
106
Piya S, Andreeff M, Borthakur G. Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia[J]. Autophagy, 2017, 13(1): 214-215.
107
Kamga PT, Bassi G, Cassaro A, et al. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia[J]. Oncotarget, 2016, 7(16): 21713-21727.
108
Ji RB, Zhang B, Zhang X, et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer[J]. Cell Cycle, 2015, 14(15): 2473-2483.
109
Wang S, Huang X, Lee CK, et al. Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of Survivin[J]. Oncogene, 2010, 29(29): 4225-4236.
110
Zhu L, Wang J, Zuo WM, et al. Mesenchymal stem cells drive paclitaxel-resistance in erbB2-overexpressing breast cancer cells via paracrine of NRG-1[J]. Cancer Research, 2016, 76(14 Supplemrnt): 4091.
111
Bliss SA, Sinha G, Sandiford OA, et al. Mesenchymal stem Cell-Derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow[J]. Cancer Res, 2016, 76(19): 5832-5844.
112
Cheteh EH, Augsten M, Rundqvist H, et al. Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death[J]. Cell Death Dis, 2017,8(6): e2848.
113
Cai J, Wang J, Huang Y, et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells[J]. Cell Death Dis, 2016, 7(11): e2459.
114
Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy[J]. Nat Rev Cancer, 2013, 13(9): 663-673.
115
Khamisipour G, Jadidi-Niaragh F, Jahromi AS, et al. Mechanisms of tumor cell resistance to the current targeted-therapy agents[J]. Tumor Biology, 2016, 37(8): 10021-10039.
116
Groenendijk FH, Bernards R. Drug resistance to targeted therapies: déjà vu all over again[J]. Mol Oncol, 2014, 8(6):1067-1083.
117
Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth factor-driven resistance to anticancer kinase inhibitors[J]. Nature, 2012, 487: 505-509.
118
Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion[J]. Nature, 2012, 487(748): 500-504.
119
Crawford Y, Kasman I, Yu LL, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to Anti-VEGF treatment[J]. Cancer Cell, 2009, 15(1): 21-34.
120
Mallampati S, Leng XH, Ma HQ, et al. Tyrosine kinase inhibitors induce mesenchymal stem cell-mediated resistance in BCR-ABL(+) acute lymphoblastic leukemia[J]. Blood, 2015, 125(19): 2968-2973.
121
Karjalainen R, Pemovska T, Popa M, et al. JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell-induced protection of AML[J]. Blood, 2017, 130(6): 789-802.
122
Harrington KJ, Billingham LJ, Brunner TB, et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers[J]. Br J Cancer, 2011, 105(5): 628-639.
123
Barker HE, Paget JT, Khan AA. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]. Nat Rev Cancer, 2015, 15(7): 409-425.
124
Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598.
125
Nicolay NH, Lopez Perez R, Saffrich R, et al. Radio-resistant mesenchymal stem cells:mechanisms of resistance and potential implications for the clinic[J]. Oncotarget, 2015, 6(23): 19366-19380.
126
Hellevik T, Pettersen I, Berg V, et al. Changes in the secretory profile of NSCLC-Associated fibroblasts after ablative radiotherapy: potential impact on angiogenesis and tumor growth[J]. Transl oncol, 2013, 6(1): 66-74.
127
Grinde MT, Vik J, Camilio KA, et al. Ionizing radiation abrogates the pro-tumorigenic capacity of cancer-associated fbroblasts co-implanted in xenografs[J]. Sci Rep, 2017,7: 46714.
128
Wang HH, Cui YL, Zaorsky NG, et al. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy[J]. Cancer Lett, 2016,375(2):349- 359.
129
Alessio N, Capasso S, Di Bernardo GA, et al. Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: Hints for side effects following radiotherapy[J]. Cell Cycle, 2017, 16(3): 251-258.
130
De Araujo Farias V, O'valle F, Alonso Lerma BA, et al. Human mesenchymal stem cells enhance the systemic effects of radiotherapy[J]. Oncotarget, 2015, 6(31):31164-31180.
131
Li Z, Fan D, Xiong D. Mesenchymal stem cells as delivery vectors for antitumor therapy[J]. Stem Cell Investig, 2015, 2: 6.
132
Sage EK, Thakrar RM, Janes SM, et al. Genetically modified mesenchymal stromal cells in cancer therapy[J]. Cytotherapy, 2016, 18(11): 1435-1445.
133
Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy[J]. Nat Rev Cancer, 2008, 8(10): 782-798.
134
林榕,左伟敏,祝玲, 等. 人肿瘤坏死因子相关凋亡诱导配体稳定过表达基因工程修饰人脐带间充质干细胞亚细胞系的建立[J/CD]. 中华细胞与干细胞杂志:电子版, 2015, 5(4):12-17.
135
Grisendi G, Bussolari R, Cafarelli L, et al. Adipose-Derived mesenchymal stem cells as stable source of tumor necrosis Factor-Related Apoptosis-Inducing ligand delivery for cancer therapy[J]. Cancer Res, 2010, 70(9): 3718-3729.
136
Xia L, Peng R, Leng W, et al. TRAIL-Expressing Gingival-Derived mesenchymal stem cells inhibit tumorigenesis of tongue squamous cell carcinoma[J]. J Dent Res, 2015, 94(1): 219-228.
137
Yan F, Li X, Li N, et al. Immunoproapoptotic molecule scFv-Fdt-tBid modified mesenchymal stem cells for prostate cancer dual-targeted therapy[J]. Cancer Lett, 2017, 402: 32-42.
138
Pacioni S, Alessandris QG, Giannetti S, et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts[J]. Stem Cell Res Ther, 2015,6: 194.
139
Rincon E, Cejalvo T, Kanojia D, et al. Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model[J]. Oncotarget, 2017, 8(28): 45415-45431.
140
Munoz JL, Bliss SA, Greco SJ, et al. Delivery of functional Anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity[J]. Mol Ther Nucleic Acids, 2013, 2: e126.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[3] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[4] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[5] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[6] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[7] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[8] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[9] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[10] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[11] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要