切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (06) : 327 -333. doi: 10.3877/cma.j.issn.2095-1221.2017.06.003

所属专题: 文献

论著

齐墩果酸通过PPARγ调控人脐静脉内皮细胞抗氧化损伤作用
朱宝华1, 谷春景1, 刘凤莲1, 刘璐2,(), 任艳红3   
  1. 1. 271100 莱芜市人民医院市中分院内科
    2. 271100 莱芜市人民医院心内科
    3. 271100 莱芜市人民医院药剂科
  • 收稿日期:2017-07-11 出版日期:2017-12-01
  • 通信作者: 刘璐

Oleanolic acid inhibits oxidative damage of HUVECs via PPARγ

Baohua Zhu1, Chunjing Gu1, Fenglian Liu1, Lu Liu2,(), Yanhong Ren3   

  1. 1. Department of Cardiology, the Affiliated Hospital of Laiwu City People's Hospital, Laiwu 271100, China
    2. Department of Cardiology, 3Department of Pharmacy, Laiwu City People's Hospital, Laiwu 271100, China
  • Received:2017-07-11 Published:2017-12-01
  • Corresponding author: Lu Liu
  • About author:
    Corresponding author:Liu Lu, Email:
引用本文:

朱宝华, 谷春景, 刘凤莲, 刘璐, 任艳红. 齐墩果酸通过PPARγ调控人脐静脉内皮细胞抗氧化损伤作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(06): 327-333.

Baohua Zhu, Chunjing Gu, Fenglian Liu, Lu Liu, Yanhong Ren. Oleanolic acid inhibits oxidative damage of HUVECs via PPARγ[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(06): 327-333.

目的

探讨齐墩果酸(OA)对ox-LDL诱导的内皮细胞氧化损伤的作用及其机制。

方法

实验分组:对照组,ox-LDL模型组,ox-LDL+OA(10μmol/L,20μmol/L,40?μmol/L)组,ox-LDL+OA(10μmol/L,20μmol/L,40μmol/L)+GW9662,GW9662单独处理组。采用MTT法检测HUVECs细胞活力;酶联免疫吸附试验法检测HUVECs细胞SOD活力、GSH活力以及MDA含量;活性氧检测试剂盒检测HUVECs细胞ROS水平;Western blot检测HUVECs细胞PPARγ蛋白表达水平,所有指标的检测都进行生物学重复。采用方差分析和两样本t检验进行统计学分析。

结果

MTT结果显示,ox-LDL组的细胞存活率为(49.17±0.62)﹪,OA(10μmol/L、20μmol/L、40μmol/L)预处理后存活率分别为(68.51±1.16)﹪、(82.64±0.73)﹪、(92.37±0.13)﹪,可减弱ox-LDL对HUVECs细胞存活率的降低且呈剂量依赖性关系,差异具有统计学意义(t = 24.35,26.18,35.17;P = 0.034,0.027,0.008)。本研究还发现,OA对ox-LDL诱导的HUVECs细胞SOD、GSH活性的降低和MDA、ROS水平的增加具有抑制作用且呈剂量依赖关系。ox-LDL组的细胞SOD、GSH、ROS和MDA水平分别为(16.12±0.06)μmol/g、(132.16?±?2.11)μmol/g、(2.63±0.02)kU/g、(158.12±0.39)﹪,ox-LDL+OA(10μmol/L)组的细胞SOD、GSH、ROS和MDA水平分别为(10.60±0.14)?μmol/g、(108.36±2.05)?μmol/g、(2.41?±0.21)kU/g、(136.18±1.24)﹪,ox-LDL+OA(20μmol/L)组的细胞SOD、GSH、ROS和MDA水平分别为(13.28±0.09)μmol/g、(129.58±0.09)μmol/g、(2.26±0.15)kU/g、(126.43±1.51)﹪,ox-LDL+OA(40μmol/L)组的细胞SOD、GSH、ROS和MDA水平分别为(14.86±0.16)μmol/g、(131.47±0.76)μmol/g、(2.14±0.08)kU/g、(112.39±1.07)﹪(F = 26.38,31.27,56.82,41.16;P?=?0.005,0.004,0.002,0.003)。Western blot结果显示,OA有效促进HUVECs细胞PPARγ蛋白水平提高。与ox-LDL+OA(20μmol/L)组(65.37±0.15)﹪比较,ox-LDL+OA(20?μmol/L)+ GW9662组的细胞活力为(52.89±0.16)﹪,差异有统计学意义(t =16.47,P = 0.035)。进一步发现ox-LDL+OA(10μmol/L)组SOD、GSH、MDA、ROS水平为(10.58?±?0.13)μmol/g、(102.46?±?0.06)μmol/g、(2.42?±?0.08)kU/g、(144.38?±2.02)﹪,ox-LDL+OA(10μmol/L)+GW9662组的SOD、GSH、MDA、ROS水平分别为(8.42±0.05)μmol/g、(88.38±0.48)μmol/g、(2.83?±?0.01)kU/g、(154.41?±?1.04)﹪,两组比较差异有统计学意义(t = 38.47,39.25,43.69,41.27;P = 0.008,0.008,0.006,0.006);ox-LDL+OA(20μmol/L)组SOD、GSH、MDA、ROS水平(13.25?±?0.05)μmol/g、(122.59?±?0.33)μmol/g、(2.23±0.16)kU/g、(123.94±?0.15)﹪,ox-LDL+ OA(20?μmol/L)+ GW9662组的SOD、GSH、MDA、RO水平分别为(10.59±?0.12)μmol/g、(106.42?±?0.15)μmol/g、(2.61?±?0.07)kU/g、(138.12?±?1.15)﹪,两组比较差异有统计学意义(t = 46.08,38.11,49.35,35.59;P = 0.005,0.008,0.004,0.009);ox-LDL+OA(40μmol/L)组SOD、GSH、MDA、ROS水平分别为(15.88±0.14)μmol/g、(140.26±1.05)μmol/g、(2.02± 0.13)kU/g、(187.52?±?0.68)﹪,ox-LDL+OA(40μmol/L)+GW9662组的SOD、GSH、MDA、RO水平(13.65?±?0.03)μmol/g、(124.61?±?1.27)μmol/g、(2.49±0.04)kU/g、(126.51±?0.73)﹪,两组比较差异有统计学意义(t = 48.04,38.62,45.14,50.13;P = 0.004,0.008,0.005,0.002),此外,本研究还发现,抑制PPARγ后,OA抑制ox-LDL诱导的HUVECs细胞的氧化损伤仍存在剂量效应。

结论

OA可以通过PPARγ抑制x-LDL诱导HUVECs细胞氧化损伤。

Objective

To investigate the effects of oleanolic acid (OA) on oxidative damage in human vascular endothelial cells (HUVECs) and its underlying mechanism.

Methods

The groups are as followings: the control group, ox-LDL alone group, ox-LDL+OA (10μmol/L,20μmol/L, 40μmol/L) group, ox-LDL+OA (10μmol/L, 20μmol/L, 40μmol/L) +GW9662 group, and GW9662 alone group. The cell viability was measured using MTT assay. The levels of SOD, GSH as well as MDA were detected by enzyme linked immunosorbent assay (Elisa) . The level of ROS was detected using reactive oxygen species detection kit. The expression level of PPARγwas measured by Western blot. All indexed are performed biology-repeatedly. The statistical analysis was used with Analysis of Variance and Kruskal-WallisHtest.

Results

OA (10μmol/L, 20μmol/L,40μmol/L) significantly attenuated the cell viability of HUVECs inhibited by ox-LDL (100μg/ml) in a dose-dependent manner and each cell viability is (68.51±1.16) ﹪, (82.64±0.73) ﹪, (92.37?±?0.13) ﹪ (t = 24.35, 26.18, 35.17; P = 0.034, 0.027, 0.008) . OA reversed oxidative damage was induced by ox-LDL including decreases in the levels of SOD and GSH, and increases in the level of MDA and ROS in HUVECs. The levels of SOD, GSH, ROS and MDA in ox-LDL group are (16.12±0.06) μmol/g, (132.16±2.11) μmol/g, (2.63±0.02) kU/g, (158.12?±0.39) ﹪; the levels of SOD, GSH, ROS and MDA in ox-LDL and OA (10μmol/L) group are (13.28?±0.09) μmol/g, (129.58±0.09) μmol/g, (2.26±0.15) kU/g, (126.43±1.51) ﹪respectively; the levels of SOD, GSH, ROS and MDA in ox-LDL and OA (20μmol/L) group is (13.28±0.09) μmol/g, (129.58?±?0.09) μmol/g, (2.26±0.15) kU/g, (126.43±1.51) ﹪respectively; the levels of SOD, GSH, ROS and MDA in ox-LDL and OA (40μmol/L) group are (14.86±0.16) μmol/g, (131.47±0.76) μmol/g, (2.14?±0.08) kU/g, (112.39±1.07) ﹪respectively (F = 26.38, 31.27, 56.82, 41.16; P = 0.005, 0.004, 0.002, 0.003) . Western blot result showed that OA attenuated downregulation of PPARγprotein induced by ox-LDL in HUVECs. Our result also showed that PPARγinhibitor GW9662 reversed the attenuation of OA on ox-LDL-caused inhibition of cell viability: the cell viability in ox-LDL+OA (20μmol/L) +GW9662 group (t = 16.47,P = 0.035) . In addition, we found that PPARγinhibitor GW9662 reversed the improvement of OA on ox-LDL-caused oxidative damage: the levels of SOD, GSH, MDA and ROS in ox-LDL+OA (10μmol/L) +GW9662 group are (8.42±0.05) μmol/g, (88.38±0.48) μmol/g, (2.83±0.01) kU/g, (154.41±1.04) ﹪ (t = 38.47, 39.25, 43.69, 41.27; P = 0.008, 0.008, 0.006, 0.006) respectively; the levels of SOD, GSH, MDA and ROS in ox-LDL+OA (20μmol/L) +GW9662 group are (10.59±0.12) μmol/g, (106.42±0.1) μmol/g, (2.61?±?0.07) kU/g, (138.12±1.15) ﹪ (t?= 46.08, 38.11, 49.35, 35.59,P =0.005, 0.008, 0.004, 0.009) respectively; the levels of SOD, GSH, MDA and ROS in ox-LDL+OA (40μmol/L) +GW9662 group was (13.65.±0.03) μmol/g, (124.61±1.27) ?μmol/g, (2.49±0.04) ?kU/g, (126.51±0.73) ﹪ (t = 48.04, 38.62, 45.14, 50.13;P = 0.004, 0.008, 0.005, 0.002) respectively. Furthermore, we also found that after inhibiting PPAR gamma, OA still dose dependently alleviated ox-LDL-caused oxidative damage of HUVECs cells.

Conclusion

OA inhibits oxidative damage induced by ox-LDL and PPARγplays a regulatory role in the protection of OA against ox-LDL-induced oxidative damage of HUVECs.

图1 OA对ox-LDL抑制HUVECs细胞活力的影响
表1 OA对ox-LDL抑制HUVECs细胞氧化损伤的影响(±s)
图2 OA对ox-LDL抑制HUVECs细胞PPARγ蛋白表达水平的影响
图3 PPARγ抑制剂对OA抗ox-LDL抑制HUVECs细胞活力的影响
表2 PPARγ抑制剂对OA抗ox-LDL抑制HUVECs细胞氧化损伤的影响(±s)
1
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J].Nature, 2011, 473(7347):317-325.
2
Vogiatzi G, Tousoulis D, Stefanadis C. The role of oxidative stress in atherosclerosis[J]. Hellenic J Cardiol, 2009, 50(5):402-409.
3
Goyal SN, Mahajan UB, Chandrayan GA, et al. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats[J]. Am J Transl Res, 2016, 8(1):60-69.
4
Yang EJ, Lee W, Ku SK, et al. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs[J]. Food Chem Toxicol, 2012, 50(5):1288-1294.
5
Buus NH, Hansson NC, Rodriguez-Rodriguez R, et al. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice[J].Eur J Pharmacol, 2011, 670(2-3):519-526.
6
王玉,韩志武.齐墩果酸对氧化损伤人脐静脉内皮细胞线粒体中一氧化氮合酶的调控作用[J].中国药房, 2015(19):2617-2620.
7
王道艳,王志,张峥,等.齐墩果酸对oxLDL诱导人脐静脉内皮细胞氧化损伤的保护作用[J].青岛大学医学院学报, 2014 (6):487-489.
8
Wang C, Gan Q, Han S, et al. The regulation of peroxisome proliferator-activated receptor-gammaon apoptotic related genes p53 and bcl-2 in cultured vascular smooth muscle cells[J]. Chinese Journal of Pathophysiology, 2004, 20(4):590-594.
9
朱莹,张文高,郑广娟,等. PPARγ与动脉粥样硬化及中医药干预研究[J].中西医结合心脑血管病杂志, 2007, 5(3):225-227.
10
He F, Li Z. Redox roles of reactive oxygen species in cardiovascular diseases[J]. Int J MolSci, 2015, 16(11):27770-27780.
11
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress[J]. Circ Res, 2000, 87(10):840-844.
12
Alexander RW. Pathogenesis of atherosclerosis: redox signaling as a unifying theme[J]. Georgia Tech, 2003,114:273.
13
Yao YS, Wang YB, Zhang YB, et al. Klotho ameliorates oxidized low density lipoprotein(ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOSpathways[J]. Lipids Health Dis, 2017, 16(1):77.
14
Ganguly G, Chakrabarti S, Chatterjee U, et al. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease[J]. Drug Des DevelTher, 2017, 11:797-810.
15
Victor VM, Rocha M, Fuente ML. Immune cells:free radicals and antioxidants in sepsis[J]. IntImmunopharmacol, 2004, 4(3):327-347.
16
Zampetaki A, Dudek K, Mayr M. Oxidative stress in atherosclerosis: The role of microRNAs in arterial remodeling[J]. Free Radical Biology and Medicine, 2013, 64(SI):69-77.
17
Galle J, Heinloth A, Wanner C, et al. Dual effect of oxidized LDL on cell cycle in human endothelial cells through oxidative stress[J]. Kidney IntSuppl, 2001, 78(78):S120-S123.
18
Liu J. Oleanolic acid and ursolic acid: research perspectives[J]. J Ethnopharmacol, 2005, 100(1-2):92-94.
19
Liu JZ, Wang X, Liu R, et al. Oleanolic acid co-administration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulating in rats[J]. ChemBiol Interact, 2014, 221:88-98.
20
Alqahtani S, Mahmoud AM. Gamma-glutamylcysteine ethyl ester protects against cyclophosphamide-induced liver injury and hematologic alterations via upregulation of PPARγand attenuation of oxidative stress, inflammation, and apoptosis[J].Oxid Med Cell Longev, 2016, 2016: 4016209.
[1] 杨晓慧, 张钦, 庾红林, 解国辉. 过氧化物酶体增殖物激活受体γ激动剂对脊髓损伤后大鼠自噬相关蛋白表达的抑制作用[J/OL]. 中华危重症医学杂志(电子版), 2019, 12(04): 223-228.
[2] 赵莉娜, 吴锦华, 刘国成, 马瑞霞. 早发型重度子痫前期患者胎盘组织中Notch1和PPAR-γ蛋白表达的临床意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(02): 164-170.
[3] 黄希, 彭文涛, 罗碧如. 8-羟基脱氧鸟苷在氧化应激与儿童相关疾病的研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2017, 13(02): 144-148.
[4] 黄福丹, 吴春凤, 安牧尔, 陈光华, 赵璐. 丹参酮ⅡA对经子痫前期患者血清刺激的人脐静脉内皮细胞的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2012, 08(02): 146-149.
[5] 曹良启, 汪谦, 陈锡林, 甄茂川, 黄晓卉, 傅新晖. 过氧化物酶增殖物激活受体γ活化抑制肝癌细胞迁移的研究[J/OL]. 中华普通外科学文献(电子版), 2007, 01(02): 85-88.
[6] 石紫云, 李艳川, 刘飞飞, 张雅, 袁晓华, 王淑娥. Notch1信号通路激活在低氧诱导人脐静脉内皮细胞血管形成中的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(03): 163-171.
[7] 姜金玉, 张东蕾, 何伟. 蓝光照射氧化损伤模型在眼部疾病中应用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(03): 168-172.
[8] 陶然, 熊斌, 郑传胜, 梁明, 王奇, 曾军. 镍钛合金裸支架对内皮细胞低密度脂蛋白穿胞影响的初步研究[J/OL]. 中华介入放射学电子杂志, 2014, 02(02): 1-3.
[9] 徐冰心, 李成林, 刘志国, 王建营, 司少艳, 李建忠, 娄晓同, 吴继华, 杨鹤鸣, 崔彦. 褪黑素减轻动态吸入火箭煤油小鼠肺组织氧化损伤[J/OL]. 中华卫生应急电子杂志, 2015, 01(02): 19-21.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?