切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 304 -308. doi: 10.3877/cma.j.issn.2095-1221.2017.05.009

所属专题: 文献

综述

脐带血非造血性功能定向干(祖)细胞研究进展
徐峰波1, 崔光晶1, 曹光鑫1   
  1. 1. 250101 济南,银丰生物工程集团有限公司
    2. 250101 济南,山东省脐带血造血干细胞库
  • 收稿日期:2016-12-15 出版日期:2017-10-01

Research progress of non-hematopoietic functional committed progenitor/stem cells in umbilical cord blood

Fengbo Xu1, Guangjing Cui1, Guangxin Cao1   

  1. 1. YinFeng Biological Group, Jinan 250101, China
    2. ShanDong Cord Blood Bank, Jinan 250101, China
  • Received:2016-12-15 Published:2017-10-01
  • About author:
    Corresponding author:Shen Bojun, Email:
引用本文:

徐峰波, 崔光晶, 曹光鑫. 脐带血非造血性功能定向干(祖)细胞研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(05): 304-308.

Fengbo Xu, Guangjing Cui, Guangxin Cao. Research progress of non-hematopoietic functional committed progenitor/stem cells in umbilical cord blood[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(05): 304-308.

脐带血非造血干细胞(UCB-nHSC)种类多样,近年来在越来越多的领域凸显其作用。本文归纳了脐带血中发现的胚胎样干细胞、非限制性体干细胞、多系性祖细胞及多潜能祖细胞、神经祖细胞的非造血干细胞的特性,指出目前研究应用领域及存在的问题,讨论与其他细胞相比在应用方面的优缺点,并在此基础上对UCB-nHSC的研究及应用前景做了展望。

There are a variety of non-hematopoietic stem cells in the umbilical cord blood and their potential use in non-hematopoietic fields have attracted great attention in recent years. This review summarizes the characteristics of embryonic-like stem cells, unrestricted somatic stem cells, multilineage progenitor cells, multipotent progenitor cells and neuronal progenitor cells which were found in the umbilical cord blood. The clinical application and existing problems of these cells are discussed. Finally, the prospect of the research and application is also presented.

图1 波长594nm-倒置显微镜(Olympus, Japan)下观察存在3D支架和无支架条件下培养USSCs的特征(阿尔新蓝染色)[10]
图2 UCB-NSCs可形成的神经球免疫组化结果[22]
1
金婷,王利,王红祥.非血缘脐血移植治疗成人急性白血病的研究进展[J].中华器官移植杂志, 2015, 36(2):120-123.
2
Matsumoto T, Mugishima H. Non-hematopoietic stem cells in umbilical cord blood[J]. Int J Stem Cells, 2009, 2(2):83-89.
3
Kucia M, Reca R, Campbell FR, et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow[J]. Leukemia, 2006, 20(5):857-869.
4
Zhao Y, Wang H, Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics[J]. Exp Cell Res, 2006, 312(13):2454-2464.
5
Halasa M, Baskiewicz-Masiuk M, Dabkowska E, et al. An efficient two-step method to purify very small embryonic-like (VSEL) stem cells from umbilical cord blood (UCB)[J]. Folia Histochem Cytobiol, 2008, 46(2):239-243.
6
Shaikh A, Nagvenkar P, Pethe P, et al. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood[J]. Leukemia, 2015, 29(9):1909-1917.
7
Ratajczak MZ, Suszynska M, Pedziwiatr D, et al. Umbilical cord blood-derived very small embryonic like stem cells (VSELs) as a source of pluripotent stem cells for regenerative medicine[J]. Pediatr Endocrinol Rev, 2012, 9(3):639-643.
8
Ratajczak J, Zuba-Surma E, Klich I, et al. Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells[J]. Leukemia, 2011, 25(8):1278-1285.
9
Kögler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential[J]. J Exp Med, 2004, 200(2):123-135.
10
Soleimani M, Khorsandi L, Atashi A, et al. Chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells on a 3D Beta-tricalcium phosphate-alginate-gelatin scaffold[J]. Cell J, 2014, 16(1):43-52.
11
Kögler G, Radke TF, Lefort A, et al. Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells[J]. Exp Hematol, 2005, 33(5):573-583.
12
Karagianni M, Brinkmann I, Kinzebach S, et al. A comparative analysis of the adipogenic potential in human mesenchymal stromal cells from cord blood and other sources[J]. Cytotherapy, 2013, 15(1):76-88.
13
Kluth SM, Radke TF, Kögler G. Increased haematopoietic supportive function of USSC from umbilical cord blood compared to CB MSC and possible role of DLK-1[J]. Stem Cells Int,2013,2013:985285.
14
Langroudi L, Forouzandeh M, Soleimani M, et al. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells[J]. Mol Biol Rep, 2013, 40(7):4429-4437.
15
van de Ven C, Collins D, Bradley MB, et al. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration[J]. 2007, 35(12):1753-1765.
16
Berger MJ, Adams SD, Tigges BM, et al. Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells[J]. Cytotherapy, 2006, 8(5):480-487.
17
Lee MW, Moon YJ, Yang MS, et al. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood[J]. Biochem Biophys Res Commun, 2007, 358(2):637-643.
18
Moon YJ, Yoon HH, Lee MW, et al. Multipotent progenitor cells derived from human umbilical cord blood can differentiate into hepatocyte-like cells in a liver injury rat model[J]. Transplant Proc, 2009, 41(10):4357-4360.
19
Moon YJ, Lee MW, Yoon HH, et al. Hepatic differentiation of cord blood-derived multipotent progenitor cells (MPCs)in vitro[J]. Cell Biol Int, 2008, 32(10):1293-1301.
20
Buzańska L, Machaj EK, Zabłocka B, et al. Human cord blood-derived cells attain neuronal and glial featuresin vitro[J].J Cell Sci, 2002, 115(Pt 10):2131-2138.
21
Buzańska L, Jurga M, Domańska-Janik K. Neuronal differentiation of human umbilical cord blood neural stem-like cell line[J]. Neurodegener Dis, 2006, 3:19-26.
22
Domanska-Janik K, Buzanska L, Lukomska B. A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells[J]. Int J Dev Biol, 2008, 52(2/3):237-248.
23
Bliss T, Guzman R, Daadi M, et al. Cell transplantation therapy for stroke[J]. Stroke, 2007, 38(S2):817-826.
24
Chen R, Ende N. The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice[J]. J Med, 2000, 31(1/2):21-30.
25
Garbuzova-Davis S, Willing AE, Zigova T, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation[J]. J Hematother Stem Cell Res, 2003, 12(3):255-270.
26
Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury[J]. Cell Transplant, 2002, 11(3):275-281.
27
Saporta S, Kim JJ, Willing AE, et al. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior[J]. J Hematother Stem Cell Res, 2003, 12(3):271-278.
28
Zhao ZM, Li HJ, Liu HY, et al. Intraspinal transplantation of CD34+human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats[J]. Cell Transplant, 2004, 13(2):113-122.
29
Sun T, Ma QH. Repairing neural injuries using human umbilical cord blood[J].Mol Neurobiol, 2013, 47(3):938-945.
[1] 曹冰, 张晓明, 梁富龙. 单细胞测序分析人类胚胎干细胞神经分化的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 1-7.
[2] 徐峰波, 崔光晶, 刘倩, 王肇光, 曹启龙. 极小胚胎样干细胞研究进展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 182-186.
[3] 刘延明, 王伟, 魏传飞, 陈清法, 韩发彬. 神经祖细胞与纤维蛋白支撑物移植对老年痴呆模型鼠的记忆认知功能改善及其机理探究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(01): 22-28.
阅读次数
全文


摘要