切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 124 -128. doi: 10.3877/cma.j.issn.2095-1221.2017.02.011

所属专题: 文献

综述

间充质干细胞诱导分化为肺泡上皮细胞治疗急性呼吸窘迫综合征研究进展
陈钦桂1, 曾勉1,()   
  1. 1. 510080 广州,中山大学附属第一医院内科重症监护病房
  • 收稿日期:2017-01-10 出版日期:2017-04-01
  • 通信作者: 曾勉
  • 基金资助:
    国家自然科学基金(81670066); 广东省省级科技计划项目(2016A020216009)

Advances in research of induced differentiation of mesenchymal stem cells into alveolar epithelial cells for treatment of ARDS

Qingui Chen1, Mian Zeng1,()   

  1. 1. Medical Intensive Care Unit, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2017-01-10 Published:2017-04-01
  • Corresponding author: Mian Zeng
  • About author:
    Corresponding author: Zeng Mian, Email:
引用本文:

陈钦桂, 曾勉. 间充质干细胞诱导分化为肺泡上皮细胞治疗急性呼吸窘迫综合征研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(02): 124-128.

Qingui Chen, Mian Zeng. Advances in research of induced differentiation of mesenchymal stem cells into alveolar epithelial cells for treatment of ARDS[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(02): 124-128.

以高死亡率著称的急性呼吸窘迫综合征(ARDS)是呼吸与重症医学领域亟需攻克的难题之一。来源广泛、体外易扩增培养的间充质干细胞(MSC)有望为ARDS的治疗提供新的有效手段。已有较多的相关研究显示了MSC治疗ARDS的有效性,而通过分化为肺泡上皮细胞修复损伤肺组织可能是其治疗机制之一。本文对MSC诱导分化为肺泡上皮细胞及其应用于治疗ARDS的研究进展进行综述,以期为该领域相关工作者提供一定的借鉴与启示。

Acute respiratory distress syndrome (ARDS) , which is notorious for its high mortality rate, is one of the greatest challenges in the field of respiratory and critical care medicine. Mesenchymal stem cell (MSC) , which is readily available and easily expandablein vitro, is considered to be a promising therapy for ARDS. Numerous studies have shown the effectiveness of MSC in the treatment of ARDS. Although the mechanism is not completely understood, differentiation of MSC into alveolar epithelial cells to repair injured lung tissue may be one of the possible mechanisms. Herein, research progress of induced differentiation of MSC into alveolar epithelial cells and its application in the treatment of ARDS is reviewed.

表1 不同研究诱导MSC分化为肺泡上皮细胞的方法
1
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8):788-800.
2
耿申,吴婷,穆先敏,等.细胞间黏附分子-1在ARDS小鼠肺微血管内皮细胞内的表达变化[J].医学研究生学报, 2016(04):342-347.
3
Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation[J].J Immunol, 2015, 194(3):855-860.
4
王凡,韩志海.炎症介质在海水淹溺急性肺损伤发生机制中的作用[J].转化医学杂志, 2015(05):311-315.
5
Horie S, Masterson C, Devaney J, et al. Stem cell therapy for acute respiratory distress syndrome: a promising future?[J]. Curr Opin Crit Care, 2016, 22(1):14-20.
6
Sweeney RM, McAuley DF. Acute respiratory distress syndrome[J]. Lancet, 2016, 388(10058):2416-2430.
7
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis[J]. Lancet Respir Med, 2014, 2(12):1016-1026.
8
Albera C, Polak JM, Janes S, et al. Repopulation of human pulmonary epithelium by bone marrow cells: a potential means to promote repair[J]. Tissue Eng, 2005, 11(7-8):1115-1121.
9
Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium[J]. Am J Respir Cell Mol Biol, 2005, 33(4):328-334.
10
赵峰,李圣青,张宇飞,等.骨髓间充质干细胞在肺损伤大鼠肺组织的分化[J].解放军医学杂志, 2007, 32(2):131-133.
11
Wang W, Qian LL, Liu HP, et al. Engraftment of bone marrow stromal cells in lipopolysaccharide-injured mouse lungs[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2009, 11(5):321-327.
12
Li JD. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells[J]. Artif Cells Nanomed Biotechnol, 2016, 44(7):1654-1658.
13
Yan X, Liu Y, Han Q, et al. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung[J]. Exp Hematol, 2007, 35(9):1466-1475.
14
Li Y, Xu W, Yan J, et al. Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro[J]. Int J Mol Med, 2014, 33(6):1507-1513.
15
Maria OM, Maria AM, Ybarra N, et al. Mesenchymal stem cells adopt lung cell phenotype in normal and radiation-induced lung injury conditions[J]. Appl Immunohistochem Mol Morphol, 2016, 24(4):283-295.
16
Gao P, Yang J, Gao X, et al. Salvianolic acid B improves bone marrow-derived mesenchymal stem cell differentiation into alveolar epithelial cells type I via Wnt signaling[J]. Mol Med Rep, 2015, 12(2):1971-1976.
17
Liu AR, Liu L, Chen S, et al. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissuein vitro[J]. J Cell Physiol, 2013, 228(6):1270-1283.
18
Cai SX, Liu AR, Chen S, et al. The Orphan receptor tyrosine kinase ROR2 facilitates MSCs to repair lung injury in ARDS animal model[J]. Cell Transplant, 2016, 25(8):1561-1574.
19
Cai SX, Liu AR, Chen S, et al. Activation of Wnt/beta-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice[J]. Stem Cell Res Ther, 2015, 6:65.
20
Cerrada A, de la Torre P, Grande J, et al. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes[J]. PLoS One, 2014, 9(10):e110195.
21
Mendez JJ, Ghaedi M, Steinbacher D, et al. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds[J]. Tissue Eng. Part A, 2014, 20(11-12):1735-1746.
22
Berger MJ, Adams SD, Tigges BM, et al. Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells[J]. Cytotherapy, 2006, 8(5):480-487.
23
Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy[J]. J Cell Biochem, 2012, 113(9):2806-2812.
24
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
25
Wilson NK, Kent DG, Buettner F, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations[J]. Cell Stem Cell, 2015, 16(6):712-724.
26
Collins JJ, Thebaud B. Progenitor cells of the distal lung and their potential role in neonatal lung disease[J]. Birth Defects Res A Clin Mol Teratol, 2014, 100(3):217-226.
27
Zhang M, Shi J, Huang Y, et al. Expression of canonical WNT/beta-CATENIN signaling components in the developing human lung[J]. BMC Dev Biol, 2012, 12:21.
28
Liu A, Chen S, Cai S, et al. Wnt5a through noncanonical Wnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type II alveolar epithelial cellsin vitro[J]. PLoS One, 2014,9(3):e90229.
29
石莉,竭晶,王芳,等. Wnt信号途径促进脂肪间充质干细胞向Ⅱ型肺泡上皮细胞分化[J].中国组织工程研究, 2015, 19(32):5148-5154.
30
Wang X, Wang Y, Snitow ME, et al. Expression of histone deacetylase 3 instructs alveolar type I cell differentiation by regulating a Wnt signaling niche in the lung[J]. Dev Biol, 2016, 414(2):161-169.
31
Sun Z, Gong X, Zhu H, et al. Inhibition of Wnt/beta-catenin signaling promotes engraftment of mesenchymal stem cells to repair lung injury[J]. J Cell Physiol, 2014, 229(2):213-224.
32
Wang C, Zhu H, Sun Z, et al. Inhibition of Wnt/beta-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury[J]. Am J Physiol Cell Physiol, 2014, 307(3):C234-C244.
33
Ludtke TH, Farin HF, Rudat C, et al. Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes Cdkn1a and Cdkn1b[J]. PLoS Genet, 2013, 9(1):e1003189.
34
Rockich BE, Hrycaj SM, Shih HP, et al. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis[J].Proc Natl Acad Sci U S A, 2013, 110(47):E4456-E4464.
35
Nyeng P, Norgaard GA, Kobberup S, et al. FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia[J]. BMC Dev Biol, 2008, 8:2.
36
Song M, Lv Q, Zhang X, et al. Dynamic tracking human mesenchymal stem cells tropism following smoke inhalation injury in NOD/SCID mice[J].Stem Cells Int, 2016, 2016:1691856.
37
黄丽丽,徐秀萍,张曦文,等.间充质干细胞向肺组织归巢在ARDS治疗中的研究进展[J].中华医学杂志, 2016, 96(13):1063-1065.
38
Li B, Zhang H, Zeng M, et al. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/beta-catenin pathway[J].Cell Biol Int, 2015, 39(2):192-200.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[3] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[4] 王斌, 王静, 黄赞胜, 王苹, 王创业, 张硕辛, 秦蘅, 孙晓容, 吴红梅, 胡晋, 杨昱, 张明周, 李力, 徐智. 肺超声可视化支气管肺泡灌洗在肺外周病灶诊断中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 466-470.
[5] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[6] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[7] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[8] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[9] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[10] 彭博, 张奕, 朱春梅. 支气管肺泡灌洗液中Th1/Th2、IL-6水平与儿童肺炎支原体肺炎伴喘息的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 212-214.
[11] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[12] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[13] 张紫薇, 卢弘. 脂多糖受体复合体在急性前葡萄膜炎虹膜色素上皮细胞中作用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 167-171.
[14] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[15] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
阅读次数
全文


摘要