1 |
Wilkinson L, Gathani T. Understanding breast cancer as a global health concern[J]. Br J Radiol, 2022, 95(1130):2021-2033.
|
2 |
王雯琼,杨蔚,刘开惠,等.乳腺X线摄影、MRI及病理联合诊断乳腺癌分子分型[J].中国医学影像技术, 2023, 39(2):210-215.
|
3 |
|
4 |
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy[J]. Cancer Lett, 2020, 470:126-133.
|
5 |
Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3):404-420.
|
6 |
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks[J]. Front Immunol, 2023, 14:1212476. doi: 10.3389/fimmu.2023.1212476.
|
7 |
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1):131. doi: 10.1186/s12943-021-01428-1.
|
8 |
Beckley SJ, Hunter MC, Kituyi SN, et al. STIP1/HOP regulates the actin cytoskeleton through interactions with actin and changes in actin-binding proteins cofilin and profilin[J]. Int J Mol Sci, 2020, 21(9):3152. doi: 10.3390/ijms21093152.
|
9 |
Krafft U, Tschirdewahn S, Hess J, et al. STIP1 tissue expression is associated with survival in chemotherapy-treated bladder cancer patients[J]. Pathol Oncol Res, 2020, 26(2):1243-1249.
|
10 |
Guo X, Yan Z, Zhang G, et al. STIP1 regulates proliferation and migration of lung adenocarcinoma through JAK2/STAT3 signaling pathway[J]. Cancer Manag Res, 2019, 11:10061-10072.
|
11 |
栗艳松,冯会敏,刘明超, 等. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(1):52-56.
|
12 |
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1):W509-W514.
|
13 |
崔芳芳,鲍俊哲,王琳琳, 等. 1990-2019年中国女性"两癌"疾病负担变化趋势及预测分析[J]. 中国卫生统计, 2022, 39(5):647-652.
|
14 |
Park M, Kim D, Ko S, et al. Breast cancer metastasis: mechanisms and therapeutic implications[J]. Int J Mol Sc, 2022, 23(12):6806. doi: 10.3390/ijms23126806.
|
15 |
Nagahashi M, Miyoshi Y. Targeting sphingosine-1-phosphate signaling in breast cancer[J]. Int J Mol Sci, 2024, 25(6):3354. doi: 10.3390/ijms25063354.
|
16 |
Lin L, Wen J, Lin B, et al. Stress-induced phosphoprotein 1 facilitates breast cancer cell progression and indicates poor prognosis for breast cancer patients[J]. Hum Cell, 2021, 34(3):901-917.
|
17 |
Nalio Ramos R, Missolo-Koussou Y, Gerber-Ferder Y, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer[J]. Cell, 2022, 185(7):1189-1207.
|
18 |
Sui S, An X, Xu C, et al. An immune cell infiltration-based immune score model predicts prognosis and chemotherapy effects in breast cancer[J]. Theranostics, 2020, 10(26):11938-11949.
|
19 |
Mehta AK, Kadel S, Townsend MG, et al. Macrophage biology and mechanisms of immune suppression in breast cancer[J]. Front Immunol, 2021, 12(4):643657. doi: 10.3389/fimmu.2021.643771.
|
20 |
Zhang Y, Li S, Liu Q, et al. Mycobacterium tuberculosis heat-shock protein 16.3 induces macrophage M2 polarization through CCRL2/CX3CR1[J]. Inflammation, 2020, 43(2):487-506.
|
21 |
Adekeye A, Agarwal D, Nayak A, et al. PTGES3 is a putative prognostic marker in breast cancer[J]. J Surg Res, 2022, 271:154-162.
|