切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 208 -216. doi: 10.3877/cma.j.issn.2095-1221.2025.04.003

论著

基于生物信息学分析乳腺癌组织STIP1表达在免疫浸润中的作用
袭厚榕1,2, 隋晓峰1,3,()   
  1. 1266073 青岛,青岛大学青岛医学院中西医结合学科
    2255000 淄博,山东省淄博市妇幼保健院乳腺甲状腺外科
    3266034 青岛,青岛市妇女儿童医院成人中医科
  • 收稿日期:2024-12-11 出版日期:2025-08-01
  • 通信作者: 隋晓峰

The role of STIP1 in immune invasion in breast cancer based on bioinformatics analysis

Hourong Xi1,2, Xiaofeng Sui1,3,()   

  1. 1Integrated Traditional Chinese and Western Medicine Discipline, Qingdao Medical College of Qingdao University, Qingdao 266073, China
    2Breast and Thyroid Surgery, Zibo Matemal and Child Health Hospital, Zibo 255000, China
    3Adult Traditional Chinese Medicine, Qingdao Women and Children's Hospital, Qingdao 266034, China
  • Received:2024-12-11 Published:2025-08-01
  • Corresponding author: Xiaofeng Sui
引用本文:

袭厚榕, 隋晓峰. 基于生物信息学分析乳腺癌组织STIP1表达在免疫浸润中的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 208-216.

Hourong Xi, Xiaofeng Sui. The role of STIP1 in immune invasion in breast cancer based on bioinformatics analysis[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(04): 208-216.

目的

探讨磷酸化应激诱导蛋白1 (STIP1)在乳腺癌组织中的表达情况及其与免疫细胞浸润之间的关系。

方法

利用GEPIA2和Ualcan数据库进行STIP1在乳腺癌及不同分型中的表达差异分析;通过Kaplan-Meier Plotter分析STIP1表达与乳腺癌及不同分型患者生存的关系;使用TIMER数据库分析STIP1与不同分型乳腺癌免疫细胞浸润的相关性;并运用String数据库分析STIP1相互作用蛋白,采用Wilcoxon符号秩检验比较乳腺癌和邻近正常组织间STIP的表达差异,其他非匹配数据的比较,两组间比较采用Mann-Whitney U检验,多组间比较采用Kruskal-Wallis H检验,组间两两比较采用Dunn检验,Kaplan-Meier曲线用于分析STIP1表达差异在乳腺癌分型中的无复发生存时间(RFS)情况,Spearman相关系数用于评估免疫细胞浸润比例与STIP1表达水平间的相关性。

结果

与正常组织比较,乳腺癌中STIP1表达上调,且在不同分型乳腺癌中均上调。STIP1高表达与乳腺癌患者的RFS降低相关,特别是在Luminal A型乳腺癌中。STIP1与CD8+ T细胞、CD4+ T细胞、中性粒细胞等多种免疫细胞浸润水平存在正相关性。STIP1与PTGES3、ASHA1、PRNP等多个蛋白存在相互作用,这些蛋白主要参与蛋白质折叠、蛋白质稳定、热应激反应、细胞周期和凋亡调控等生物学过程。

结论

STIP1在乳腺癌中的表达上调,与患者的不良预后相关,特别是在Luminal A型乳腺癌中。STIP1可能在乳腺癌的免疫微环境中发挥重要作用,通过调节免疫细胞的功能状态影响肿瘤的发展和预后。

Objective

This study aims to investigate the expression of stress-induced phosphoprotein 1 (STIP1) in breast cancer tissues and its relationship with immune cell infiltration.

Methods

The GEPIA2 and Ualcan databases were used to analyze the expression difference of STIP1 in different types of breast cancer. Kaplan-Meier Plotter was used to analyze the relationship between the expression of STIP1 and the survival of breast cancer patients with different subtypes. TIMER database was used to analyze the correlation between STIP1 and immune cell infiltration in different types of breast cancer. The String database was used to analyze the STIP1 related interaction proteins. The difference expression of STIP1 between breast cancer and adjacent normal tissue is compared by Wilcoxon test. The difference of other indexes between two groups were compared by Mann-Whitney U test. The difference among groups were compared by Kruskal-Wallis H test, and pairwise comparisons between groups were conducted using the Dunn test. Kaplan-Meier curve was used to analyze the relapse-free survival (RFS) of STIP1 expression differences in different types of breast cancer, and Spearman correlation coefficient was used to evaluate the correlation between the proportion of immune cell infiltration and the expression level of STIP1.

Results

Compared with normal tissues, STIP1 expression is upregulated in different types of breast cancer. High expression of STIP1 is associated with reduced RFS in breast cancer patients, especially in Luminal A breast cancer. STIP1 is positively correlated with the infiltration levels of various immune cells such as CD8+ T cells, CD4+ T cells, and neutrophils. STIP1 interacts with multiple proteins such as PTGES3, ASHA1, and PRNP, which are mainly involved in biological processes such as protein folding, protein stability, heat stress response, cell cycle, and apoptosis regulation.

Conclusion

The upregulation of STIP1 in breast cancer is associated with poor prognosis for patients, especially in Luminal A subtype breast cancer. STIP1 may play a significant role in the immune microenvironment of breast cancer, influencing tumor development and prognosis by modulating the functional status of immune cells.

图1 STIP1在乳腺癌组织和正常组织之间的表达比较注:与正常组织比较,*P < 0.05
图2 STIP1在乳腺癌病变组织与相匹配的非病变组织中的表达差异注:与邻近正常组织比较,****P < 0.0 001
图3 STIP1在不同分型的乳腺癌和正常组织之间的表达注:与正常组比较,***P < 0.001,与Luminal型比较,*P < 0.05,**P<0.01
图4 STIP1在乳腺癌中的生存预后情况注:a图为STIP1在乳腺癌的生存预后情况;b图为STIP1在三阴性乳腺癌的生存预后情况;c图为STIP1在HER2阳性乳腺癌的生存预后情况;d图为STIP1在Luminal A型的乳腺癌的生存预后情况;e图为STIP1在Luminal B型的乳腺癌的生存预后情况
图5 STIP1在乳腺癌中免疫浸润相关性分析
图6 STIP1在三阴性乳腺癌中免疫浸润相关性分析
图7 STIP1在HER2阳性乳腺癌中免疫浸润相关性分析
图8 STIP1在Luminal A型的乳腺癌中免疫浸润相关性分析
图9 STIP1在Luminal B型的中免疫浸润相关性分析
图10 STIP1蛋白相互作用分析结果
1
Wilkinson L, Gathani T. Understanding breast cancer as a global health concern[J]. Br J Radiol, 2022, 95(1130):2021-2033.
2
王雯琼,杨蔚,刘开惠,等.乳腺X线摄影、MRI及病理联合诊断乳腺癌分子分型[J].中国医学影像技术, 2023, 39(2):210-215.
3
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221:107753. doi:10.1016/j.pharmthera.2020.107753.
4
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy[J]. Cancer Lett, 2020, 470:126-133.
5
Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3):404-420.
6
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks[J]. Front Immunol, 2023, 14:1212476. doi: 10.3389/fimmu.2023.1212476.
7
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1):131. doi: 10.1186/s12943-021-01428-1.
8
Beckley SJ, Hunter MC, Kituyi SN, et al. STIP1/HOP regulates the actin cytoskeleton through interactions with actin and changes in actin-binding proteins cofilin and profilin[J]. Int J Mol Sci, 2020, 21(9):3152. doi:10.3390/ijms21093152.
9
Krafft U, Tschirdewahn S, Hess J, et al. STIP1 tissue expression is associated with survival in chemotherapy-treated bladder cancer patients[J]. Pathol Oncol Res, 2020, 26(2):1243-1249.
10
Guo X, Yan Z, Zhang G, et al. STIP1 regulates proliferation and migration of lung adenocarcinoma through JAK2/STAT3 signaling pathway[J]. Cancer Manag Res, 2019, 11:10061-10072.
11
栗艳松,冯会敏,刘明超, 等. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(1):52-56.
12
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1):W509-W514.
13
崔芳芳,鲍俊哲,王琳琳, 等. 1990-2019年中国女性"两癌"疾病负担变化趋势及预测分析[J]. 中国卫生统计, 2022, 39(5):647-652.
14
Park M, Kim D, Ko S, et al. Breast cancer metastasis: mechanisms and therapeutic implications[J]. Int J Mol Sc, 2022, 23(12):6806. doi: 10.3390/ijms23126806.
15
Nagahashi M, Miyoshi Y. Targeting sphingosine-1-phosphate signaling in breast cancer[J]. Int J Mol Sci, 2024, 25(6):3354. doi: 10.3390/ijms25063354.
16
Lin L, Wen J, Lin B, et al. Stress-induced phosphoprotein 1 facilitates breast cancer cell progression and indicates poor prognosis for breast cancer patients[J]. Hum Cell, 2021, 34(3):901-917.
17
Nalio Ramos R, Missolo-Koussou Y, Gerber-Ferder Y, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer[J]. Cell, 2022, 185(7):1189-1207.
18
Sui S, An X, Xu C, et al. An immune cell infiltration-based immune score model predicts prognosis and chemotherapy effects in breast cancer[J]. Theranostics, 2020, 10(26):11938-11949.
19
Mehta AK, Kadel S, Townsend MG, et al. Macrophage biology and mechanisms of immune suppression in breast cancer[J]. Front Immunol, 2021, 12(4):643657. doi: 10.3389/fimmu.2021.643771.
20
Zhang Y, Li S, Liu Q, et al. Mycobacterium tuberculosis heat-shock protein 16.3 induces macrophage M2 polarization through CCRL2/CX3CR1[J]. Inflammation, 2020, 43(2):487-506.
21
Adekeye A, Agarwal D, Nayak A, et al. PTGES3 is a putative prognostic marker in breast cancer[J]. J Surg Res, 2022, 271:154-162.
[1] 明昊, 宋宏萍, 白誉誉, 党晓智, 赵阳, 程燕妮, 王琪, 肖迎聪. 自动乳腺超声联合临床病理特征预测Luminal B 型乳腺癌术后复发风险的临床研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 337-347.
[2] 卜烨, 王鹏, 安丽颖, 陈园. 三阴性乳腺癌组织长链非编码RNA CCAT1、miR-152表达与增殖侵袭基因以及临床病理特征的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 198-205.
[3] 林丽, 杨英, 张嘉, 齐晓伟, 王莉, 王寅欢, 任林. 屈服应对方式在三阴性乳腺癌患者癌症复发恐惧与希望水平间的中介效应[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 226-231.
[4] 刘纹延, 马志军. 激素受体阳性乳腺癌的预后评估[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 247-252.
[5] 贺雅莉, 黄丽, 杨培娟. 功能保留手术在低位直肠癌治疗中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 701-704.
[6] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[7] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[8] 张聪, 李成. 胰头区恶性肿瘤外科手术预后现状及相关因素的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 574-578.
[9] 曾舒昊, 康博禹, 郑高赞, 郑建勇, 丰帆. 青年结直肠癌患者的临床病理特征及预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 449-452.
[10] 李盼, 张华秦. 不同腹腔镜胆囊切除术治疗胆囊结石的疗效比较研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 388-391.
[11] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[12] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[13] 陈佳乐, 余安海, 袁文康, 张超, 张冲. 肝切除术围手术期监测及处理[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 785-788.
[14] 王淼, 贺佳佳, 潘颖威, 王小兰, 姚袆, 刘明宝, 陆兮, 苏丽洁. 远端胆管癌术后生存预后及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 582-588.
[15] 刘晓萍, 汪嵘嵘, 吴佳慧, 吴紫云, 周伯宣. 多组学分析HAPLN1与肝癌预后及免疫细胞浸润关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 609-618.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?