切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-1221.2025.04.001

论著

肠道微球菌科通过免疫介导与乳腺癌发生关联的孟德尔随机化研究
何永庆, 苍雪静, 姜亚志()   
  1. 211300 南京市高淳人民医院甲状腺乳腺外科
  • 收稿日期:2024-09-01 出版日期:2025-08-01
  • 通信作者: 姜亚志

The mendelian randomization study on the association of intestinal micrococci with the occurrence of breast cancer through immune-mediated interaction

Yongqing He, Xuejing Chang, Yazhi Jiang()   

  1. Thyroid and Breast Surgery, Nanjing Gaochun People's Hospital, Nanjing 211300, China
  • Received:2024-09-01 Published:2025-08-01
  • Corresponding author: Yazhi Jiang
引用本文:

何永庆, 苍雪静, 姜亚志. 肠道微球菌科通过免疫介导与乳腺癌发生关联的孟德尔随机化研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 193-198.

Yongqing He, Xuejing Chang, Yazhi Jiang. The mendelian randomization study on the association of intestinal micrococci with the occurrence of breast cancer through immune-mediated interaction[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(04): 193-198.

目的

本研究旨在探讨肠道微球菌科通过CD45RA+免疫细胞介导与乳腺癌发生之间的因果关联。

方法

采用孟德尔随机化(MR)分析,建立肠道微球菌科、CD45RA+免疫细胞与乳腺癌之间的关联。肠道微生物组数据来源于全基因组关联研究(GWAS)数据库,其中包括多个群体的肠道微生物组宏基因组测序数据;乳腺癌数据则来源于欧洲女性群体的大规模GWAS。通过对这些数据进行过滤和选择,获取与肠道微球菌科和乳腺癌发生关联的数据,并采用MR分析去除弱工具变量:总效应分析,反向MR分析,肠道微球菌科对CD45RA+免疫细胞的MR分析,CD45RA+免疫细胞对乳腺癌的MR分析,中介效应计算,敏感性分析等方法探讨CD45RA+免疫细胞对乳腺癌发生的作用。

结果

肠道微球菌科丰度与CD45RA+免疫细胞表达呈正相关(逆方差加权法OR = 1.385,95% CI:1.017 ~ 1.684,P = 0.034),CD45RA+免疫细胞表达与乳腺癌发病呈负相关(OR = 0.769,95% CI:0.545 ~ 0.995,P = 0.017)。肠道微球菌科丰度与乳腺癌发病总效应为负相关(OR = 0.857,95% CI:0.745 ~ 0.955,P = 0.016)。

结论

本研究证实肠道微球菌科通过CD45RA+免疫细胞介导乳腺癌发病风险降低,为靶向菌群-免疫轴的干预策略提供依据。

Objective

This study aims to explore the causal association between the mediation of intestinal micrococci and the occurrence of breast cancer through CD45RA+ immune cells.

Methods

Mediating mendelian randomization (MR) analysis was used to establish the association between intestinal micrococci, CD45RA+ immune cells and breast cancer. The data of the gut microbiome were derived from the genome-wide association studies (GWAS) database, which included the metagenomic sequencing data of the gut microbiome of multiple populations. The breast cancer data originated from large-scale GWAS studies of the European female population. By filtering and selecting these data, we obtained the data associated with the occurrence of intestinal micrococci and breast cancer, and used MR analysis to remove weak instrumental variables. The role of CD45RA+ immune cells in the occurrence of breast cancer was explored by methods such as total effect analysis, reverse MR analysis, MR analysis of CD45RA+ immune cells in the Enterococcus family, MR analysis of CD45RA+ immune cells in breast cancer, mediating effect calculation, and sensitivity analysis.

Results

The abundance of intestinal micrococci is positively correlated with the expression of CD45RA+ immune cells significantly (IVW OR = 1.385, 95% CI:1.017-1.684, P = 0.034). The expression of CD45RA+ immune cells was negatively correlated with the incidence of breast cancer (IVW OR = 0.769, 95% CI: 0.545-0.995, P = 0.017). The abundance of intestinal micrococci was significantly negatively correlated with the total effect on the incidence of breast cancer (IVW OR = 0.857, 95% CI: 0.745-0.955, P = 0.016) .

Conclusion

This study confirmed that the intestinal micrococcus family mediates the reduction of the risk of breast cancer incidence through CD45RA+ immune cells, providing a basis for the intervention strategy targeting the microbiota-immune axis.

图1 乳腺癌发生风险因果关联图注:a图为肠道微球菌科与乳腺癌细胞发生之间的因果关联(总效应是正向相关而反向无关联);b图为肠道微球菌科通过CD45RA+免疫细胞作为中介与乳腺癌发生因果关联
图2 肠道微球菌科通过CD45RA+ T细胞介导与乳腺癌关联的孟德尔随机化及相关性分析注:a图为孟德尔随机化效应量分析(孟德尔随机化Egger回归、逆方差加权法)评估肠道微球菌科对CD45RA+ CD4+ T细胞活性的因果效应;b图为肠道微球菌科丰度与CD45RA+ T细胞活性的Spearman秩相关分析,左下图为Spearman秩相关分析,rs = 0.28,P = 0.018;右下图为稳健回归残差分析
图3 CD45RA+ T细胞表达水平与乳腺癌风险的负向关联注:β = -0.21,P = 0.017
表1 肠道微球菌科通过CD45RA+免疫介导与乳腺癌发生的关联
图4 敏感性分析验证肠道微球菌科降低乳腺癌风险的结果稳健性注:森林图展示不同孟德尔随机化方法对肠道微球菌科与乳腺癌关联的效应估计值(OR)及95%置信区间。黑色方块代表各方法效应估计值,水平线表示置信区间。所有方法显示效应方向一致(OR < 1),支持肠道微球菌科降低乳腺癌风险的稳健性
1
Harbeck N, Gnant M. Breast cancer[J]. Lancet, 2017, 389(10074):1134-1150.
2
Xu H, Xu B. Breast cancer: epidemiology, risk factors and screening[J]. Chin J Cancer Res, 2023, 35(6):565-583.
3
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
4
Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland[J]. N Engl J Med, 2000, 343(2):78-85.
5
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1):121-141.
6
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150):1241214. doi: 10.1126/science.1241214.
7
Bernardo G, Le Noci V, Di Modica M, et al. The emerging role of the microbiota in breast cancer progression[J]. Cells, 2023, 12(15):1945. doi:10.3390/cells12151945.
8
Jordan CKI, Clarke TB. How does the microbiota control systemic innate immunity?[J]. Trends Immunol, 202445(2):94-102.
9
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009, 9(5):313-323.
10
Kallikourdis M, Condorelli G. An immune checkpoint inhibitor heart: how CD45RA+ effector memory CD8+ T cells (Temra) are implicated in immune checkpoint inhibitor myocarditis[J]. Circulation, 2022, 146(4):336-338.
11
Bernardo G, Le Noci V, Di Modica M, et al. The emerging role of the microbiota in breast cancer progression[J]. Cells,2023,12(15):1945. doi: 10.3390/cells12151945.
12
Qi X, Liu Y, Hussein S, et al. The species of gut bacteria associated with antitumor immunity in cancer therapy[J]. Cells, 202211(22):3684. doi: 10.3390/cells11223684.
13
Nandi D, Sharma D. Integrating immunotherapy with conventional treatment regime for breast cancer patients-an amalgamation of armamentarium[J]. Front Immunol, 202415:1477980. doi:10.3389/fimmu.2024.1477980.
14
Nandi D, Parida S, Sharma D. The gut microbiota in breast cancer development and treatment: the good, the bad, and the useful![J].Gut Microbes, 202315(1):2221452. doi: 10.1080/19490976.2023.2221452.
15
Meng S, Chen B, Yang J, et al. Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy[J]. Front Oncol, 2018, 8: 318. doi: 10.3389/fonc.2018.00318.
16
El Tekle G, Garrett WS. Bacteria in cancer initiation, promotion and progression[J]. Nat Rev Cancer, 2023, 23(9):600-618.
17
Akram M, Iqbal M, Daniyal M, et al. Awareness and current knowledge of breast cancer[J]. Biol Res, 2017, 50(1):33. doi: 10.1186/s40659-017-0140-9.
18
DeSantis C, Siegel R, Bandi P, et al. Breast cancer statistics, 2011[J]. CA Cancer J Clin, 2011, 61(6):409-418.
19
Erlichman N, Meshel T, Baram T, et al. The cell-autonomous pro-metastatic activities of PD-L1 in breast cancer are regulated by N-linked glycosylation-dependent activation of STAT3 and STAT1[J]. Cells, 202312(19):2338. doi:10.3390/cells12192338.
20
Les I, Martínez M, Pérez-Francisco I, et al. Predictive biomarkers for checkpoint inhibitor immune-related adverse events[J]. Cancers, 2023, 15(5):1629. doi: 10.3390/cancers15051629.
21
Chen Q, Shen M, Yan M, et al. Targeting tumor-infiltrating CCR8+ regulatory T cells induces antitumor immunity through functional restoration of CD4+ Tconvs and CD8+ T cells in colorectal cancer[J]. J Transl Med, 2024, 22(1):709. doi: 10.1186/s12967-024-05518-8.
22
Boieri M, Malishkevich A, Guennoun R, et al. CD4+ T helper 2 cells suppress breast cancer by inducing terminal differentiation[J]. Exp Med, 2022, 219(7):e20201963. doi: 10.1084/jem.20201963.
23
Muradás TC, Freitas RD, Gonçalves JI, et al. Potential antitumor effects of short-chain fatty acids in breast cancer models[J]. Am J Cancer Res, 2024, 14(5):1999-2019.
24
Yin T, Zhang X, Xiong Y, et al. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications[J]. Microbiol Res, 2024,288:127871.doi: 10.1016/j.micres.2024.127871.
[1] 明昊, 宋宏萍, 白誉誉, 党晓智, 赵阳, 程燕妮, 王琪, 肖迎聪. 自动乳腺超声联合临床病理特征预测Luminal B 型乳腺癌术后复发风险的临床研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 337-347.
[2] 孙舒涵, 陈雅静, 宗晴晴, 栗翠英, 缪殊妹, 杨斌, 俞飞虹. 基于超声的深度学习列线图预测乳腺癌新辅助化疗后腋窝淋巴结状态的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 97-105.
[3] 卜烨, 王鹏, 安丽颖, 陈园. 三阴性乳腺癌组织长链非编码RNA CCAT1、miR-152表达与增殖侵袭基因以及临床病理特征的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 198-205.
[4] 林丽, 杨英, 张嘉, 齐晓伟, 王莉, 王寅欢, 任林. 屈服应对方式在三阴性乳腺癌患者癌症复发恐惧与希望水平间的中介效应[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 226-231.
[5] 赵长燕, 张明慧, 陆春燕. FOXC1和claudin-4在三阴性乳腺癌中的表达及其与肿瘤微环境和炎症相关因子的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 97-102.
[6] 张建, 陈小军, 杨建, 陈新杰. 肌筋膜松解术对乳腺癌根治术后患者恢复效果的随机对照研究[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 103-107.
[7] 史彦纪, 张磊, 雷宁波, 常瑞龙, 左宁, 顾玉彪. 孟德尔随机化探讨免疫性疾病与人工关节再手术的关联[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 193-199.
[8] 王思卓, 段晓鑫, 陈隆, 董胜利. 肠道微生物群、血液代谢物和胃癌的因果关系:东亚人群中介孟德尔随机化研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 163-168.
[9] 安宁, 陈健, 张京伟, 习一清. 长链非编码RNA 乳腺癌抗雌激素耐药基因4 在常见肿瘤进展中的作用[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 203-208.
[10] 杨娜, 胡刚, 潘越. 保乳术和改良根治术后行新辅助化疗对三阴性乳腺癌血清标志物影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 345-348.
[11] 何友新, 韩林荟, 杨贺庆. 新辅助化疗分别联合保乳术和改良根治术治疗Ⅱ、Ⅲ期乳腺癌的应用效果[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 184-187.
[12] 刘军, 王子函, 李梦新, 高国璇, 蒋宏传, 沈光前. 单孔机器人保乳手术初步探索[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 162-165.
[13] 吴鸿宇, 牟鳄贤, 董浩, 纪娟, 刘世伟. 间质肿瘤浸润淋巴细胞与年轻乳腺癌新辅助治疗腋窝病理完全缓解的相关性[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 102-107.
[14] 黑墨然, 马慧娥, 郝嫣然, 徐泽成, 郭义, 陈泽林, 李丹, 陈波, 赵雪, 赵天易. 不同针灸疗法治疗乳腺癌术后淋巴水肿相关症状的Meta 分析及其腧穴配伍的网状Meta 分析[J/OL]. 中华针灸电子杂志, 2025, 14(02): 58-65.
[15] 李兴研, 郜业发. 乳腺癌保乳术后放疗致急性放射性皮炎风险预测模型构建及验证[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 165-169.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?