切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (02) : 82 -92. doi: 10.3877/cma.j.issn.2095-1221.2025.02.003

论著

Circ-CCDC66通过与miR-618结合靶向PTEN调控结直肠癌进展
陈伟1, 周健2,(), 包文霞1, 崔建华1   
  1. 1. 224200 东台,江苏省东台市人民医院消化内科
    2. 224200 东台,江苏省东台市人民医院中心实验室
  • 收稿日期:2024-11-12 出版日期:2025-04-01
  • 通信作者: 周健
  • 基金资助:
    江苏省2020年高层次卫生人才“六个一工程”拔尖人才科研项目 (LGY2020061)

Circ-CCDC66 regulates colorectal cancer progression by binding to miR-618 and targeting PTEN

Wei Chen1, Jian Zhou2,(), Wenxia Bao1, Jianhua Cui1   

  1. 1. Department of Gastroenterology,Dongtai People's Hospital,Dongtai 224200,China
    2. Central Laboratory,Dongtai People's Hospital,Dongtai 224200,China
  • Received:2024-11-12 Published:2025-04-01
  • Corresponding author: Jian Zhou
引用本文:

陈伟, 周健, 包文霞, 崔建华. Circ-CCDC66通过与miR-618结合靶向PTEN调控结直肠癌进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 82-92.

Wei Chen, Jian Zhou, Wenxia Bao, Jianhua Cui. Circ-CCDC66 regulates colorectal cancer progression by binding to miR-618 and targeting PTEN[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(02): 82-92.

目的

探讨环状RNA CCDC66 (Circ-CCDC66)通过miR-618/磷酸酶和张力蛋白同源物 (PTEN)调控结直肠癌的进展的作用及其机制。

方法

收集结直肠癌组织和癌旁正常组织样本10 对,采用生物信息学方法对Circ-CCDC66 进行靶向预测,筛选出相关的miR- 618、PTEN 进行后续实验。实时荧光定量聚合酶链式反应 (RT-qPCR)检测NCM620、SW480、SW620、HCT116 细胞中 Circ- CCDC66 表达量,RNase R 处理HCT116、SW620 细胞后CCDC66和Circ-CCDC66 表达量,转染miR 618 mimic 或慢病毒载体转染Circ-CCDC66 后SW680 细胞组与HCT116 细胞组miR- 618 表达量;Western blot 检测细胞中PTEN、AKT、BCL-2 蛋白的含量;双荧光素酶报告基因检测Circ- CCDC66 与miR-618,miR-618 与PTEN 之间的靶向作用;细胞计数试剂-8(CCK-8)实验检测不同分组处理后的细胞增殖变化、划痕实验;侵袭测定(Transwell) 实验检测不同分组处理后结直肠癌细胞的侵袭与迁移。两组间比较采用独立样本t 检验,多组间比较采用单因素方差分析,组间两两比较采用 LSD-t 检验。

结果

与结直肠癌旁组织相比,结直肠癌组织中Circ-CCDC66 (0.69 ± 0.20 比1.00 ± 0.21)、PTEN mRNA 表达 (0.26 ±0.13 比1.00 ± 0.48)及PTEN 蛋白表达(0.67 ± 0.23 比1.00 ± 0.13)均降低 (P 均 < 0.05)。与正常结肠上皮细胞系NCM460 相比,结直肠癌细胞系HCT116、SW620、SW480 中Circ-CCDC66表达 (0.50 ± 0.03、0.18 ± 0.02、0.62 ± 0.05 比1.00 ± 0.10)降低 (P 均 < 0.01),结直肠癌细胞系HCT116、SW620 细胞中Circ-CCDC66 表达量低于SW480 细胞 (P 均 < 0.05)。生物信息学分析和慢病毒转染实验显示,miR-618 为Circ-CCDC66 的下游作用靶点。双荧光素酶报告实验显示miR-618 靶向作用于结直肠癌细胞系中的PTEN 基因。过表达miR-618 后,结直肠癌SW620、HCT116 细胞中PTEN 蛋白表达含量[(0.49 ± 0.01 比1.00 ± 0.01),(0.52 ± 0.00 比1.01 ±0.00)]下降 (P 均 < 0.001)。CCK-8、细胞划痕和Transwell 实验显示,Circ-CCDC66 过表达能够抑制结直肠癌SW620 细胞、HCT116 细胞48 h 增殖[(0.48 ± 0.09 比0.83 ± 0.05)、(0.41 ± 0.05比0.68 ± 0.05)]、迁移[(25.33 ± 2.08)% 比 (41.00 ± 3.61)%、(28.00 ± 2.00)% 比 (40.00 ±5.00)%]和侵袭能力[(42.33 ± 4.93)比(61.33 ± 4.16) 个、(25.00 ± 5.00)比(41.00 ± 3.61)个](P 均< 0.05)。而miR-618 可以逆转上述改变[增殖(0.78 ± 0.05)比 (0.48 ± 0.09)、(0.58 ± 0.05)比 (0.41 ± 0.05);迁移 [(35.00 ± 2.00)%比 (25.33 ± 2.08)%、(40.00 ± 1.73)%比 (28.00 ±2.00)%];侵袭[(68.67 ± 5.03)比 (42.33 ± 4.93)个、(39.33 ± 5.13)比 (25.00 ± 5.00)个](P均< 0.05)。

结论

Circ-CCDC66 通过与结直肠癌细胞中的miR-618 结合靶向PTEN,进而影响结直肠癌细胞的进展。

Objective

To explore the effects of circular RNA CCDC66 (Circ-CCDC66)on colorectal cancer progression through miR-618/phosphatase and tensin homolog deleted on chromosome ten (PTEN).

Methods

Ten pairs of colorectal cancer tissues and adjacent normal tissues were collected.Bioinformatics methods were used to predict the targets of Circ-CCDC66, and miR-618 and PTEN were selected for subsequent experiments.Real- time fluorescence quantitative PCR (RT-qPCR) was used to detect the expression of Circ- CCDC66 in NCM620, SW480, SW620,and HCT116 cells.The expression of CCDC66 and Circ-CCDC66 in HCT116 as well as SW620 cells were detected after RNase R treatment.The expression of miR-618 in SW620 and HCT116 cells were detected after transfection with miR- 618 mimic or lentivirus vector transfection of Circ- CCDC66.Western blot was used to detect the expression levels of PTEN, AKT, and BCL- 2 proteins in cells.Dual-luciferase reporter gene assay was used to detect the targeted relationship between Circ- CCDC66 and miR-618, miR-618 and PTEN.Cell Counting Kit-8 (CCK- 8) assay was used to detect the changes in cell proliferation after different treatments, scratch assay and Transwell invasion assay were used to detect the invasion and migration of colorectal cancer cells after differenttreatments.Independent sample t test was used to compare the measurement data between the two groups, one-way analysis of variance was used for comparison among multiple groups, and LSD-t test was used for pairwise comparison between groups.

Results

Compared with the adjacent tissues of colorectal cancer, the expression of Circ-CCDC66 (0.69 ± 0.20 vs 1.00 ± 0.21) and PTEN mRNA (0.26 ± 0.13 vs 1.00 ± 0.48) and PTEN protein (0.67 ± 0.23 vs 1.00 ± 0.13) in colorectal cancer tissues were decreased (all P < 0.05).Compared with the normal colon epithelial cell line NCM460, the expression of Circ-CCDC66 (0.50 ± 0.03, 0.18 ± 0.02, 0.62 ± 0.05 vs 1.00 ± 0.10)was decreased in colorectal cancer cell lines HCT116, SW620, and SW480 (all P < 0.01), and the expression of Circ-CCDC66 in HCT116 and SW620 cells was lower than that in SW480 cells (all P <0.05).Bioinformatics analysis and lentivirus transfection experiments indicated that miR- 618 was a downstream target of Circ-CCDC66.Dual-luciferase reporter assays showed that miR-618 targeted the PTEN gene in colorectal cancer cell lines.After overexpression of miR-618, the expression of PTEN proteins in colorectal cancer SW620 and HCT116 cells (0.49 ± 0.01 vs 1.00 ± 0.01, 0.52 ±0.00 vs 1.01 ± 0.00) were decreased (all P < 0.001).CCK-8, cell scratch, and Transwell assays demonstrated that overexpression of Circ-CCDC66 could inhibit the proliferation (0.48 ± 0.09 vs 0.83 ± 0.05, 0.41 ± 0.05 vs 0.68 ± 0.05), migration [(25.33 ± 2.08)% vs (41.00 ± 3.61)%, (28.00 ±2.00)% vs (40.00 ± 5.00)%], and invasion [(42.33 ± 4.93) vs (61.33 ± 4.16)cells, (25.00 ± 5.00)vs (41.00 ± 3.61) cells] abilities of colorectal cancer SW620 and HCT116 cells at 48 h (all P < 0.05).However, miR-618 could reverse the inhibitory effects of Circ-CCDC66 overexpression [proliferation(0.78 ± 0.05 vs 0.48 ± 0.09, 0.58 ± 0.05 vs 0.41 ± 0.05); migration [(35.00 ± 2.00)% vs (25.33 ±2.08)%, (40.00 ± 1.73)% vs (28.00 ± 2.00)%]; invasion [(68.67 ± 5.03) vs (42.33 ± 4.93)cells, (39.33 ± 5.13) vs (25.00 ± 5.00) cells] (all P < 0.05).

Conclusion

Circ-CCDC66 could influence the progression of colorectal cancer cells by binding to miR-618 and targeting PTEN

表1 引物序列信息
图1 Circ-CCDC66 在结直肠癌组织和细胞中的表达 注:a 图为RT-qPCR 检测结直肠肿瘤组织和癌旁组织中Circ-CCDC66 表达含量;b 图为RT-qPCR 检测结直肠肿瘤组织和癌旁组织中PTEN mRNA 表达含量;c 图为Western blot 检测结直肠肿瘤组织和癌旁组织中PTEN 蛋白表达量;d 图为RT-qPCR 检测结直肠癌细胞系中Circ-CCDC66 表达量;*P < 0.05,**P < 0.01,***P < 0.001 (n = 10)
表2 RNase R处理后CCDC66和Circ-CCDC66表达量 ( ± s
图2 Circ-CCDC66 与miR-618 的结合序列
图3 慢病毒载体转染Circ-CCDC66 对miR-618 表达的影响 注:a 图为SW620 细胞和HCT116 细胞转染miR-618 的转染效率;b 图为SW620 细胞和HCT116 细胞转染Circ-CCDC66 的转染效率;c 图为转染Circ-CCDC66 后SW620 细胞和HCT116 细胞中miR-618 的表达; *P < 0.05, **P < 0.01,***P < 0.001
表3 转染miR-618 mimics 后Circ-CCDC66-WT 组与Circ-CCDC66-MUT 组的荧光素酶活性 ( ± s
图4 miR-618 在结肠癌组织中表达上调并靶向结合PTEN 后抑制PTEN 表达 注:a 图为生物信息学检测miR-618 在结直肠癌组织中的表达变化;b 图为 miR-618 与PTEN 的结合序列;c 图为 RT-qPCR 检测转染miR-618 mimics后结直肠癌细胞系中miR-618 表达含量;d 图为Western blot 检测细胞分别转染mimics、miR-618 mimics 后PTEN 的蛋白表达;**P < 0.01,***P < 0.001
图5 倒置显微镜下观察结直肠癌细胞迁移
图6 倒置显微镜下观察结直肠癌细胞侵袭 (结晶紫染色)
图7 Western blot 检测Circ-CCDC66 过表达处理后结直肠癌细胞中PTEN、AKT 和 BCL2 的表达 注:a、b 图分别为SW620 细胞和HCT116 细胞Circ-CCDC66 过表达处理后PTEN、AKT 和 BCL2 的蛋白表达变化
表4 转染miR-618 mimics 后PTEN- WT 组与PTEN- MUT 组的荧光素酶活性 ( ± s
表5 Circ-CCDC66 过表达对结直肠癌细胞迁移、侵袭的影响 ( ± s
表6 Circ-CCDC66 过表达对结直肠癌细胞增殖的影响 ( ± s
表7 Circ-CCDC66 过表达对SW620、HCT116 细胞蛋白表达的影响 ( ± s
1
Zheng R, Wang S, Zhang S, et al.Global, regional, and national lifetime probabilities of developing cancer in 2020[J].Sci Bull(Beijing), 2023,68(21):2620-2628.
2
Shin AE, Giancotti FG, Rustgi AK.Metastatic colorectal cancer:mechanisms and emerging therapeutics[J].Trends Pharmacol Sci,2023, 44(4):222-236.
3
Siegel RL, Wagle NS, Cercek A, et al.Colorectal cancer statistics,2023[J].CA Cancer J Clin, 2023, 73(3):233-254.
4
Ren H, Song Z, Chao C, et al.circCCDC66 promotes thyroid cancer cell proliferation,migratory and invasive abilities and glycolysis through the miR-211-5p/PDK4 axis[J].Oncol Lett, 2021, 21(5):416.doi: 10.3892/ol.2021.12677.
5
Yang R, Wang Z, Meng G, et al.Circular RNA CCDC66 facilitates abdominal aortic aneurysm through the overexpression of CCDC66[J].Cell Biochem Funct, 2020, 38(7):830-838.
6
Nemeth K, Bayraktar R, Ferracin M, et al.Non-coding RNAs in disease:from mechanisms to therapeutics[J].Nat Rev Genet, 2024,25(3):211-232.
7
Ivanovic RF, Viana NI, Morais DR, et al.miR-618:possible control over TIMP-1 and its expression in localized prostate cancer[J].BMC Cancer, 2018, 18(1):992.doi:10.1186/s12885-018-4930-4.
8
Batea HM, El-Dine SHM, Kamha EM, et al.The predictive value of hsa_circ_0001313 (circCCDC66) in Egyptian rectal cancer patients:a new era in precision medicine[J].JCP, 2024, 44(3): e163-e170.
9
Jacobsson M, Wagner V, Kanneganti S.Screening for colorectal cancer[J].Surg Clin North Am, 2024, 104(3):595-607.
10
Hsiao KY, Lin YC, Gupta SK, et al.Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis[J].Cancer Res,2017, 77(9):2339-2350.
11
GBD 2019 Colorectal Cancer Collaborators.Global, regional, and national burden of colorectal cancer and its risk factors,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet Gastroenterol Hepatol, 2022, 7(7):627-647.
12
黄忠晶, 伍子奕, 艾军华.肝移植治疗结直肠癌肝转移的研究进展[J].器官移植, 2024, 15 (2): 185-190.
13
Ionescu VA, Gheorghe G, Bacalbasa N, et al.Colorectal cancer: from risk factors to oncogenesis[J].Medicina (Kaunas), 2023, 59(9):1646.doi: 10.3390/medicina59091646.
14
Abedizadeh R, Majidi F, Khorasani HR, et al.Colorectal cancer: a comprehensive review of carcinogenesis,diagnosis, and novel strategies for classified treatments[J].Cancer Metastasis Rev, 2024, 43(2):729-753.
15
Benson AB, Venook AP, Al-Hawary MM, et al.Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology[J].J Natl Compr Canc Netw, 2021, 19(3):329-359.doi:10.6004/jnccn.2021.0012.
16
Hsiao KY, Lin YC, Gupta SK, et al.Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis[J].Cancer Res,2017, 77(9):2339-2350.
17
Radanova M, Mihaylova G, Mihaylova Z, et al.Circulating miR- 618 has prognostic significance in patients with metastatic colon cancer[J].Curr Oncol, 2021, 28(2):1204-1215.
18
Chen Z, Chen W, Hong Z, et al.MiR-618 suppresses the proliferation,invasion, and migration of non-small lung cancer via the JAK2/STAT3 axis[J].J Cardiothorac Surg, 2024, 19(1):679.doi:10.1186/s13019-024-03160-5.
19
Song XL, Tang Y, Lei XH, et al.miR-618 inhibits prostate cancer migration and invasion by targeting FOXP2[J].J Cancer, 2017,8(13):2501-2510.doi:10.7150/jca.17407.
20
Hashemi M, Etemad S, Rezaei S, et al.Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy:Revisiting molecular interactions[J].Biomed Pharmacother, 2023, 158:114204.doi: 10.1016/j.biopha.2022.114204.
21
Bergholz JS, Wang Q, Wang Q, et al.PI3Kβ controls immune evasion in PTEN-deficient breast tumours[J].Nature, 2023, 617(7959):139-146.
22
Christine A, Park MK, Song SJ, et al.The equilibrium of tumor suppression: DUBs as active regulators of PTEN[J].Exp Mol Med,2022, 54(11):1814-1821.
23
Tu T, Chen J, Chen L, et al.Dual-specific protein and lipid phosphatase PTEN and its biological functions[J].Cold Spring Harb Perspect Med,2020, 10(1):a036301.doi:10.1101/cshperspect.a036301.
24
Morana O, Wood W, Gregory CD.The apoptosis paradox in cancer[J].Int J Mol Sci, 2022, 23(3):1328.doi: 10.3390/ijms23031328.
25
He Y, Sun MM, Zhang GG, et al.Targeting PI3K/Akt signal transduction for cancer therapy[J].Sig Transduct Target Ther, 2021,6(1):425.doi: 10.1038/s41392-021-00828-5.
26
Meng X, Cui J, He G.Bcl-2 is involved in cardiac hypertrophy through PI3K-Akt pathway[J].Biomed Res Int, 2021, 2021:6615502.doi:10.1155/2021/6615502.
27
Kaloni D, Diepstraten ST, Strasser A, et al.BCL-2 protein family:attractive targets for cancer therapy[J].Apoptosis, 2023, 28(1-2):20-38.
28
Wan L, Wang Y, Li J, et al.Inhibition of the AKT/mTOR pathway negatively regulates PTEN expression via miRNAs[J].Acta Biochim Biophys Sin (Shanghai), 2022, 54(11):1637-1647.
29
You J, Wu Q, Li Y, et al.Lentinan induces apoptosis of mouse hepatocellular carcinoma cells through the EGR1/PTEN/AKT signaling axis[J].Oncol Rep, 2023, 50(1):142.doi: 10.3892/or.2023.8579.
[1] 辛岗, 刘佳妮, 胡崇珠, 杨颖. HER-2 表达与HER-2 阳性乳腺癌临床病理特征及靶向治疗疗效的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 45-48.
[2] 赵海涛. 进展期胆管癌治疗探索及展望[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 110-110.
[3] 虞先濬. 胰腺肿瘤外科:外科学遇见肿瘤学——拥抱精准、走向卓越[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 27-27.
[4] 吴楚营, 叶凯. 不同部位胃肠道间质瘤的腹腔镜手术策略[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 224-227.
[5] 潘永昇, 江杰, 曹栋梁, 季陈, 姜丽丽, 陈建刚, 朱华, 郑兵. 经会阴认知融合靶向穿刺在PI-RADS V2.1评分为五分患者中的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 167-173.
[6] 朱洪浩, 范新祥. 广东省医学会泌尿外科疑难病例多学科会诊(第18期)——女性尿道癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 120-124.
[7] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[8] 吴春霖, 侯一夫, 陈凯, 赵冀, 唐世杰, 杨洪吉. 肝动脉灌注化疗联合PD-1/TKI 治疗不可切除性肝癌的安全性和疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 217-224.
[9] 黄忠晶, 张丽东, 伍子奕, 艾军华. 不可切除肝细胞癌的转化治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 41-45.
[10] 孙志鹏, 束斌, 王良, 黄鑫, 王鹏飞, 李广欣, 王小娟, 黎功, 杨世忠. 放疗联合靶向免疫新辅助治疗肝内胆管细胞癌的安全性与疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 92-96.
[11] 李伟男, 杨刚, 熊永福, 李强, 李敬东. 中晚期肝癌TACE 联合靶向免疫转化治疗后成功实施ALPPS 的初步经验[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 97-101.
[12] 邱枫, 杨天池, 韩威. 腹腔镜超声引导下射频消融治疗肝脏恶性肿瘤的安全性与疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 102-106.
[13] 沈小芳, 赵娜, 李克佳, 肖跃飞. 膜性肾病的靶抗原发现及靶向治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 53-56.
[14] 曾春琴, 沈强, 周厚利, 李双龙, 胡高铭. 糖尿病视网膜病变中视网膜色素上皮脂代谢异常的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 50-54.
[15] 宋然, 郑雅各. 仑伐替尼联合肝动脉插管化疗栓塞术治疗不可切除晚期肝癌的疗效及生存率影响因素分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 120-124.
阅读次数
全文


摘要