切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (01) : 20 -29. doi: 10.3877/cma.j.issn.2095-1221.2025.01.003

论著

纳米金棒对A549 细胞的毒性效应及其对自噬的影响
吕园园1,2, 高辰旸3, 徐永君1,2,()   
  1. 1. 350025 福州,福建医科大学福总临床医学院福建省移植生物学重点实验室
    2. 350025 福州,联勤保障部队第九〇〇医院基础医学实验室
    3. 350001 福州,福建医科大学附属协和医院神经内科
  • 收稿日期:2024-11-14 出版日期:2025-02-01
  • 通信作者: 徐永君
  • 基金资助:
    福建省自然科学基金 (2024J011168)福建医科大学启航基金 (2022QH1331)

The effect of gold nanorods on cytotoxicity and autophagy of A549 cells

Yuanyuan Lv1,2, Chenyang Gao3, Yongjun Xu1,2,()   

  1. 1. Fujian Key Laboratory of Transplantation Biology,Fuzong Clinical Medical College of Fujian Medical University,Fuzhou 350025,China
    2. Department of Basic Medical Laboratory,900th Hospital of the Joint Logistics Support Force,PLA,Fuzhou 350025,China
    3. Department of Neurology,Fujian Medical University Affiliated Union Hospital,Fuzhou 350001,China
  • Received:2024-11-14 Published:2025-02-01
  • Corresponding author: Yongjun Xu
引用本文:

吕园园, 高辰旸, 徐永君. 纳米金棒对A549 细胞的毒性效应及其对自噬的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 20-29.

Yuanyuan Lv, Chenyang Gao, Yongjun Xu. The effect of gold nanorods on cytotoxicity and autophagy of A549 cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(01): 20-29.

目的

探讨纳米金棒 (AuNRs)对A549 细胞的生物毒性效应及其可能机制。

方法

将正常培养A549 细胞分别给予0、0.5、1、2、4 μg/mL AuNRs 处理6、12、24 h 后进行检测。使用CCK-8 实验、LDH 实验分别观察细胞活力与细胞膜损伤;使用透射电镜观察AuNRs 在细胞内的分布和细胞形态;使用Western blot 检测自噬相关蛋白ATG16、ATG4、Beclin1、LC3- Ⅱ、P62 的表达;使用激光扫描共聚焦显微镜检测ROS;使用试剂盒检测GSH/GSSG、T-AOC。数据方差齐性检验后进行单因素方差分析;组间两两比较采用Student-Newman-Keuls 检验。

结果

CCK-8 实验结果表明,与0 μg/mL 相比,4 μg/mL AuNRs 处理A549 细胞6 h 后细胞活力[(80.05 ± 3.45)%比 (100 ± 2.47%)]降低 (P < 0.01);2、4 μg/mL AuNRs 处理A549 细胞12 h 后细胞活力[(71.36 ± 3.87)%、(39.47 ± 4.16)%比 (100 ± 3.12)%]降低 (P < 0.01);1、2、4 μg/ mL AuNRs 处理A549 细胞24 h 后细胞活力[(91.83 ± 1.98)%、(56.53 ± 3.57)%、(28.65 ±3.09)%比 (100 ± 2.34)%]降低 (P < 0.01)。LDH 实验表明,细胞LDH 渗漏增加且具有统计学意义 (P < 0.01)。4 μg/mL AuNRs 处理6 h 后,透射电镜观察发现AuNRs 能够进入A549 细胞并以单个颗粒或聚集体形式存于细胞质和部分膜囊泡中。Western blot 结果表明,分别用0、0.5、1、2、4 μg/mL AuNRs 处理A549 细胞6 h 后,ATG16、ATG4、Beclin1 和LC3-Ⅱ蛋白表达增加,而自噬底物蛋白P62 表达降低 (P < 0.01)。给予100 μmol/L MnTBAP 或10 mmol/L NAC 处理,AuNRs 引起细胞ROS 和LC3 表达增加能够被逆转,同时T-AOC [(92.37 ± 8.49)%比 (68.46 ±6.38)%,(110.49 ± 7.39)%比 (51.26 ±7.39)%]、GSH/GSSG[(92.56 ± 5.52)%比 (62.48 ±5.52)%,(104.49 ± 4.84)%比 (57.39 ± 4.84)%]水平升高 (P 均 < 0.05)。

结论

AuNRs 能够进入A549 细胞引发细胞毒性效应,且细胞毒性效应呈剂量、时间依赖性增加,其机制可能与AuNRs 导致A549 细胞抗氧化应激能力降低进而引起细胞自噬有关。

Objective

To investigate the biological toxic effect and mechanisms of gold nanorods (AuNRs) on A549 cells.

Methods

Normal cultured A549 cells were treated with different concentrations of AuNRs for 6, 12 or 24 hours for subsequent detection. CCK-8 test and LDH test were used to observe cell viability and cell membrane damage. The distribution and morphology of AuNRs in cells were observed by transmission electron microscope. Western blot was used to detect the expression of autophagy related proteins ATG16, ATG4, Beclin1, LC3-Ⅱ and P62. ROS was detected by laser scanning confocal microscope. The levels of GSH/GSSG and T-AOC were detected by kits. One way ANOVA was performed after the homogeneity test of data variance and Student- Newman-Keuls test was used for pairwise comparison between different groups.

Results

CCK-8 results showed that compared with the 0 μg/mL, the cell viability of the 4 μg/ mL AuNRs [(80.05 ± 3.45)% vs (100 ± 2.47)%] was decreased at 6 h after treated with AuNRs (P <0.01). The cell viability of 2 μg/mL and 4 μg/mL AuNRs [(71.36 ± 3.87)% and (39.47 ± 4.16)%vs (100 ± 3.12)%] were decreased (P < 0.01) at 12 h after treated with AuNRs; The cell viability of 1 μg/mL, 2 μg/mL and 4 μg/mL AuNRs [(91.83 ± 1.98)%, (56.53 ± 3.57)% and (28.65 ± 3.09)%vs (100 ± 2.34)%] were decreased (P < 0.01) at 24 h after treated with AuNRs. LDH test showed that the leakage of LDH was increased significantly (P < 0.01). Transmission electron microscopy showed that AuNRs could enter A549 cells and exist in the cytoplasm and some membrane vesicles in the form of single particles or aggregates 6 h after treatment with 4 μg/mL AuNRs. Western blot showed that after treated with different concentrations of AuNRs (0, 0.5, 1, 2, 4 μg/mL)for 6 h, the expression levels of ATG16, ATG4, Beclin1 and LC3- Ⅱ proteins were significantly increased, while the expression level of autophagy substrate protein P62 was significantly decreased in A549 cells(P < 0.01). After treated with 100 μmol/L MnTBAP or 10 mmol/L NAC, the increased expression of ROS and LC3 induced by AuNRs could be reversed, and the content of T-AOC [(92.37 ± 8.49)%vs (68.46 ± 6.38)%, (110.49 ± 7.39)% vs (51.26 ± 7.39)%] and GSH/GSSG [(92.56 ± 5.52)%vs (62.48 ± 5.52)% , (104.49 ± 4.84)% vs (57.39 ± 4.84)%] were increased (all P < 0.05).

Conclusion

AuNRs can enter A549 cells and induce cytotoxicity effect, which in a dose-dependent and time-dependent manner. The mechanism may be related to the reduction of antioxidative stress ability of A549 cells caused by AuNRs.

图1 0、0.5、1、2、4 μg/mL AuNRs 处理A549 细胞6、12、24 h 后细胞活力和细胞膜损伤的影响 注:a ~ c 图为细胞活力的影响;d ~ f 图为细胞膜损伤的影响;与0 μg/mL 组相比,**P < 0.01
图2 显微镜观察0、0.5、1、2、4 μg/mL AuNRs 处理A549 细胞6 h 后LC3 的表达 (免疫荧光,20 μm)
图3 显微镜观察4 μg/mL AuNRs 处理A549 细胞6、12、24 h 后LC3 的表达 (免疫荧光,20 μm)
图4 透射电镜观察4 μg/mL AuNRs 处理A549 细胞后自噬的影响 (2 μm,1 μm,500 nm) 注:红色箭头AuNRs,黑色箭头自噬小体
图5 0、0.5、1、2、4 μg/mL AuNRs 处理A549 细胞6 h 后自噬相关蛋白的表达 注:a 图为自噬相关蛋白条带图;b ~ f 图为自噬相关蛋白统计分析图;与0 μg/mL 组相比,*P < 0.05,**P < 0.01
图6 AuNRs 和抗氧化剂MnTBAP、NAC 共同处理A549 细胞6 h 后ROS、抗氧化能力的影响 注:a 图为AuNRs 和(或)MnTBAP (100 μmol/L)共同处理6 h 后ROS 结果;b ~ c 图为 AuNRs 和(或)MnTBAP (100 μmol/L)共同处理6 h 后T-AOC、GSH/GSSG结果;d图为 AuNRs和 (或)NAC (10 mmol/L)共同处理6 h后ROS结果;e ~ f图为AuNRs和(或) NAC (10 mmol/L)共同处理6 h后T-AOC、GSH/GSSG 结果;*P < 0.05,**P < 0.01
图7 AuNRs 和/或MnTBAP/NAC 共同处理A549 细胞6 h后LC3 蛋白的表达 注:a 图为AuNRs 和(或)MnTBAP (100 μmol/L)共同处理LC3 蛋白条带及统计图;b 图为AuNRs 和(或)NAC (10 mmol/L)共同处理LC3 蛋白条带及统计图;**P < 0.01
7
Wang C, Mathiyalagan R, Kim YJ, et al. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities[J]. Int J Nanomedicine, 2016, 11:3691-3701.
8
Zhou X, Medina-Ramirez IE, Su G, et al. All roads lead to rome:comparing nanoparticle- and small molecule-driven cell autophagy[J].Small, 2024, 20(34):e2310966. doi: 10.1002/smll.202310966.
9
闫庆韬,万斯傲,刘意,等. 刺槐素对非小细胞肺癌A549 细胞的抑制作用及其机制[J]. 江苏大学学报(医学版), 2023, 33 (6): 461-469.
10
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance[J]. Chem Commun(Camb), 2024, 60(5):469-481.
11
李峰杰, 郝鹏, 吴一辉. 金纳米棒对SPR 生物传感器灵敏度的增强效应[J].传感器与微系统, 2011, 30(7):20-23.
12
Ayipo YO, Bakare AA, Badeggi UM, et al. Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases[J]. Curr Res Chem Biol, 2022, 2:100021. doi: 10.1016/j.crchbi.2022.100021.
13
Nakhla S, Rahawy A, Salam MAE, et al. Radiosensitizing and phototherapeutic effects of AuNPs are mediated by differential Noxa and Bim gene expression in MCF-7 breast cancer cell line[J]. IEEE Trans Nanobioscience, 2021, 20(1):20-27.
14
Tetrick MG, Murphy CJ. Leveraging tunable nanoparticle surface functionalization to alter cellular migration[J]. ACS Nanosci Au, 2024,4(3):205-215.
15
汤莹, 范晓燕, 羊富光, 等. 四氧化三铁磁性纳米颗粒对人角质形成细胞超微结构的影响[J]. 第二军医大学学报, 2012, 33(7):703-706.
16
Varlamova EG. Molecular mechanisms of the therapeutic effect of selenium nanoparticles in hepatocellular carcinoma[J]. Cells, 2024,13(13):1102. doi: 10.3390/cells13131102.
17
Norell PN, Campisi D, Mohan J, et al. Biogenesis of omegasomes and autophagosomes in mammalian autophagy[J]. Biochem Soc Trans,2024, 52(5):2145-2155.
18
Schaaf MB, Keulers TG, Vooijs MA, et al. LC3/GABARAP family proteins: autophagy-(un)related functions[J]. FASEB J, 2016,30(12):3961-3978.
19
Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Mol Cell, 2015, 57(3):456-466.
20
Wang R, Ha KY, Dhandapani S, et al. Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway[J]. J Nanobiotechnology, 2022, 20(1):441. doi: 10.1186/s12951-022-01576-6.
21
Liu W, Liu H, Zhang S, et al. Silica nanoparticles cause ovarian dysfunction and fertility decrease in mice via oxidative stress-activated autophagy and apoptosis[J]. Ecotoxicol Environ Saf, 2024, 285:117049.doi: 10.1016/j.ecoenv.2024.117049.
1
Karnwal A, Kumar Sachan RS, Devgon I, et al. Gold Nanoparticles in Nanobiotechnology: from synthesis to biosensing applications[J]. ACS Omega, 2024, 9(28):29966-29982.
2
Singh P, Pandit S, Balusamy SR, et al. Advanced nanomaterials for cancer therapy: gold, silver, and iron oxide nanoparticles in oncological applications[J]. Adv Healthc Mater, 2024, 6:e2403059. doi: 10.1002/adhm.202403059.
3
Berta L, Coman NA, Rusu A, et al. A review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. materials (Basel)[J]. 2021, 14(24):7677. doi:10.3390/ma14247677.
4
García-Torra V, Cano A, Espina M, et al. State of the art on toxicological mechanisms of metal and metal oxide nanoparticles and strategies to reduce toxicological risks[J]. Toxics, 2021, 9(8):195. doi:10.3390/toxics9080195.
5
Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of gold nanoparticles[J]. Small, 2007, 3(11):1941-9. doi: 10.1002/smll.200700378.
6
刘朝阳, 方艳艳, 章智冰. 纳米二氧化钛暴露的神经毒性作用及机制[J].中国环境科学, 2024, 44(9):5275-5285.
[1] 周圆圆, 周怡, 段亚阳, 张怡卿, 朱峰宇, 张超学. 低强度超声缓解顺铂所致小鼠卵巢损伤的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1132-1141.
[2] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[3] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[4] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[5] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[6] 王馨悦, 王卓然, 古丽莎. 氧化纳米铈促进氧化应激状态下口腔骨缺损修复的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 62-69.
[7] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[8] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[9] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[10] 何婧, 张海涛, 邵琦妍, 吴彬阁. 硫柳汞对结膜上皮细胞自噬调控及水杨酸钠对其保护机制的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 346-350.
[11] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 姜帅宇, 刘越, 路晓光. 高脂饲喂调控自噬对肠黏膜屏障应激能力的影响[J/OL]. 中华卫生应急电子杂志, 2024, 10(06): 359-367.
阅读次数
全文


摘要