切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 56 -61. doi: 10.3877/cma.j.issn.2095-1221.2024.01.009

综述

DBF4依赖性激酶在肿瘤发展与治疗中的作用研究进展
陈柳艳1, 梁瑶瑶1, 陈津1,()   
  1. 1. 570311 海口,海南医学院第二附属医院临床医学研究所
  • 收稿日期:2023-10-17 出版日期:2024-02-01
  • 通信作者: 陈津
  • 基金资助:
    海南省自然科学基金(822MS179); 海南省重点研发项目(ZDYF2022SHFZ133)

Progress in the role of DBF4-dependent kinase in tumor development and treatment

Liuyan Chen1, Yaoyao Liang1, Jin Chen1,()   

  1. 1. Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
  • Received:2023-10-17 Published:2024-02-01
  • Corresponding author: Jin Chen
引用本文:

陈柳艳, 梁瑶瑶, 陈津. DBF4依赖性激酶在肿瘤发展与治疗中的作用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 56-61.

Liuyan Chen, Yaoyao Liang, Jin Chen. Progress in the role of DBF4-dependent kinase in tumor development and treatment[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(01): 56-61.

DBF4依赖性激酶(DDK)是由DBF4与CDC7结合形成,可激活解螺旋酶,在细胞的复制中发挥重要作用。DBF4作为调节亚基,还可以通过与其他蛋白结合,直接或间接地激活细胞周期激酶,进一步调节细胞周期。研究发现,在许多肿瘤中,DBF4基因持续高表达,致使DDK激酶的活化增多,这可能是癌症发生的基础。靶向抑制DDK,有可能抑制肿瘤的生长。因此本文将从DDK的结构与调节功能、DDK在肿瘤发展中的作用以及DDK抑制剂在抗肿瘤中的作用研究进展做一综述,以期为开发靶向肿瘤细胞周期治疗方法提供理论依据。

DBF4-dependent kinase (DDK) is formed by the binding of DBF4 and CDC7, and it could activate helicase. This activation plays a crucial role in cell replication. DBF4, as a regulatory subunit, also activates cell cycle kinases directly or indirectly by interacting with other proteins. This interaction further regulates the cell cycle process. It has been shown that the DBF4 gene is continuously overexpressed in many tumors. The overexpression of DBF4 leads to DDK kinase activation, which might be the underlying reason for cancer development. Targeted inhibition of DDK potentially inhibits tumor growth. Therefore, this article provides a comprehensive review on the structure and regulatory function of DDK, the role of DDK in tumor development, and the application of DDK inhibitors in tumor treatment, in order to provide a theoretical basis for the development of targeted tumor cell cycle therapy methods.

图1 DBF4与CDC7结构和激活示意图[10]
表1 DBF4-CDC7激酶与肿瘤的关系
1
张宇飞,潘剑锋,乔永华,等.周期蛋白D与CDK4/6在细胞周期进程中的调控机制[J]. 中国细胞生物学学报, 2023, 45(11):1715-1722.
2
侯泽宇,唐金茹,李龙江.口腔鳞状细胞癌发生、发展过程中细胞周期调控因子的研究进展[J].口腔颌面外科杂志, 2023, 33(2):119-122.
3
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: the pleiotropic function of CDK4 in cancer[J]. Semin Cancer Biol, 2024, 98:51-63.
4
Li N, Gao N, Zhai Y. DDK promotes DNA replication initiation: Mechanistic and structural insights[J]. Curr Opin Struct Biol, 2023, 78:102504. doi:10.1016/j.sbi.2022.102504.
5
Bonte D, Lindvall C, Liu H, et al. Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation[J]. Neoplasia, 2008, 10(9):920-931.
6
Jackson AL, Pahl PM, Harrison K, et al. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein[J]. Mol Cell Biol, 1993, 13(5):2899-2908.
7
Huse M, Kuriyan J. The conformational plasticity of protein kinases[J]. Cell, 2002, 109(3):275-282.
8
Petrie MV, Zhang H, Arnold EM, et al. Dbf4 Zn-finger motif is specifically required for stimulation of Ctf19-activated origins in saccharomyces cerevisiae[J]. Genes (Basel), 2022, 13(12):2202. doi: 10.3390/genes13122202.
9
Cheng J, Li N, Huo Y, et al. Structural insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase[J]. Nat Commun, 2022, 13(1):1396. doi: 10.1038/s41467-022-29070-5.
10
Dick SD, Federico S, Hughes SM, et al. Structural basis for the activation and target site specificity of CDC7 kinase[J]. Structure, 2020, 28(8):954-962.e4.
11
Endicott JA, Noble ME, Johnson LN. The structural basis for control of eukaryotic protein kinases[J]. Annu Rev Biochem, 2012, 81:587-613.
12
Hughes S, Elustondo F, Di Fonzo A, et al. Crystal structure of human CDC7 kinase in complex with its activator DBF4[J]. Nat Struct Mol Biol, 2012, 19(11):1101-1107.
13
Fang D, Lengronne A, Shi D, et al. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing[J]. Genes Dev, 2017, 31(23-24):2405-2415.
14
Greiwe JF, Miller TCR, Locke J, et al. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase[J]. Nat Struct Mol Biol, 2022, 29(1):10-20.
15
Saleh A, Noguchi Y, Aramayo R, et al. The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer[J]. Nat Commun, 2022, 13(1):2915. doi: 10.1038/s41467-022-30576-1.
16
Abd Wahab S, Remus D. Antagonistic control of DDK binding to licensed replication origins by Mcm2 and Rad53[J]. Elife, 2020, 9:e58571. doi: 10.7554/eLife.58571.
17
Gillespie PJ, Blow JJ. DDK: the outsourced kinase of chromosome maintenance[J]. Biology (Basel), 2022, 11(6):877. doi: 10.3390/biology11060877.
18
Yoon HJ, Loo S, Campbell JL. Regulation of Saccharomyces cerevisiae CDC7 function during the cell cycle[J]. Mol Biol Cell, 1993, 4(2):195-208.
19
Sato N, Sato M, Nakayama M, et al. Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex[J]. Genes Cells, 2003, 8(5):451-463.
20
Sasi NK, Coquel F, Lin YL, et al. DDK has a primary role in processing stalled replication forks to initiate downstream checkpoint signaling[J]. Neoplasia, 2018, 20(10):985-995.
21
Larasati, Duncker BP. Mechanisms governing DDK regulation of the initiation of DNA replication[J]. Genes(Basel), 2016, 8(1):3. doi: 10.3390/genes8010003.
22
Zhang H, Petrie MV, He Y, et al. Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins[J]. Elife, 2019, 8:e45512. doi: 10.7554/eLife.45512.
23
Weinreich M, Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway[J]. EMBO J, 1999, 18(19):5334-5346.
24
Zhang L, Hong J, Chen W, et al. DBF4 dependent kinase inhibition suppresses hepatocellular carcinoma progression and potentiates anti-programmed cell death-1 therapy[J]. Int J Biol Sci, 2023, 19(11): 3412-3427.
25
Wang M, Qiu ZH, Wang YZ, et al. Analysis of the expression and prognostic significance of DDK complex in hepatocarcinoma[J]. BMC Cancer, 2023, 23(1): 19.
26
Liu Z, Li J, Chen J, et al. MCM family in HCC: MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression[J]. BMC Cancer, 2018, 18(1): 200.
27
Hanna A, Nixon MJ, Estrada MV, et al. Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer[J]. Breast Cancer Res, 2022, 24(1): 51.
28
Spurgers KB, Gold DL, Coombes KR, et al. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression[J]. J Biol Chem, 2006, 281(35):25134-25142.
29
Qi Y, Hou Y, Qi L. miR-30d-5p represses the proliferation, migration, and invasion of lung squamous cell carcinoma via targeting DBF4[J]. J Environ Sci Health C Toxicol Carcinog, 2021, 39(3):251-268.
30
Sasi NK, Bhutkar A, Lanning NJ, et al. DDK promotes tumor chemoresistance and survival via multiple pathways [J]. Neoplasia, 2017, 19(5):439-450.
31
Bourcier K, Le Cesne A, Tselikas L, et al. Basic knowledge in soft tissue sarcoma[J]. Cardiovasc Intervent Radiol, 2019, 42(9):1255-1261.
32
Pappo AS, Dirksen U. Rhabdomyosarcoma, ewing sarcoma, and other round cell sarcomas[J]. J Clin Oncol, 2018, 36(2):168-179.
33
Ma H, Yu H, Li Z, et al. β-carboline dimers inhibit the tumor proliferation by the cell cycle arrest of sarcoma through intercalating to Cyclin-A2[J]. Front Immunol, 2022, 13:922183.
34
Martin JC, Sims JR, Gupta A, et al. CDC7 kinase (DDK) inhibition disrupts DNA replication leading to mitotic catastrophe in ewing sarcoma[J]. Cell Death Discov, 2022, 8(1):85.
35
Wang T, Ji R, Liu G, et al. Lactate induces aberration in the miR-30a-DBF4 axis to promote the development of gastric cancer and weakens the sensitivity to 5-Fu[J]. Cancer Cell Int, 2021, 21(1):602.
36
Nambiar S, Mirmohammadsadegh A, Hassan M, et al. Identification and functional characterization of ASK/Dbf4, a novel cell survival gene in cutaneous melanoma with prognostic relevance[J]. Carcinogenesis, 2007, 28(12):2501-2510.
37
徐明,薛波新,阳东荣,等.肾透明细胞癌中具有预后预测价值免疫相关基因的筛选[J].现代泌尿生殖肿瘤杂志, 2022, 14(1):8-15.
38
Kase AM, George DJ, Ramalingam S. Clear cell renal cell carcinoma: from biology to treatment[J]. Cancers (Basel), 2023, 15(3):665.
39
de Boussac H, Bruyer A, Jourdan M, et al. Kinome expression profiling to target new therapeutic avenues in multiple myeloma[J]. Haematologica, 2020, 105(3):784-795.
40
Zhen Y, Fu H, Si L, et al. Expression of MCMs in endometrial cancer and its biological correlation analysis [J]. Comb Chem High Throughput Screen, 2023, 26(4):815-825.
41
Pauzaite T, Tollitt J, Sopaci B, et al. Dbf4-Cdc7 (DDK) inhibitor PHA-767491 displays potent anti-proliferative effects via crosstalk with the CDK2-RB-E2F pathway[J]. Biomedicines, 2022, 10(8):2012.
42
Swords R, Mahalingam D, O'Dwyer M, et al. Cdc7 kinase-a new target for drug development[J]. Eur J Cancer, 2010, 46(1):33-40.
43
Ito S, Taniyami C, Arai N, et al. Cdc7 as a potential new target for cancer therapy[J]. Drug News Perspect, 2008, 21(9):481-488.
44
McLaughlin RP, He J, van der Noord VE, et al. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy[J]. Breast Cancer Res, 2019, 21(1):77.
45
Koltun ES, Tsuhako AL, Brown DS, et al. Discovery of XL413, a potent and selective CDC7 inhibitor[J]. Bioorg Med Chem Lett, 2012, 22(11):3727-3731.
46
Sasi NK, Tiwari K, Soon FF, et al. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds[J]. PLoS One, 2014, 9(11):e113300.
47
Wang C, Vegna S, Jin H, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer[J]. Nature, 2019, 574(7777):268-272.
48
Chava S, Bugide S, Malvi P, et al. Co-targeting of specific epigenetic regulators in combination with CDC7 potently inhibit melanoma growth[J]. iScience, 2022, 25(8): 104752.
49
Deng L, Yang L, Zhu S, et al. Identifying CDC7 as a synergistic target of chemotherapy in resistant small-cell lung cancer via CRISPR/Cas9 screening[J]. Cell Death Discov, 2023, 9(1):40.
50
Iwai K, Nambu T, Dairiki R, et al. Molecular mechanism and potential target indication of TAK-931, a novel CDC7-selective inhibitor[J]. Sci Adv, 2019, 5(5):eaav3660.
51
Kurasawa O, Miyazaki T, Homma M, et al. Discovery of a novel, highly potent, and selective thieno[3,2-d]pyrimidinone-based Cdc7 inhibitor with a quinuclidine moiety (TAK-931) as an orally active investigational antitumor agent[J]. J Med Chem, 2020, 63(3):1084-1104.
52
Iwai K, Nambu T, Kashima Y, et al. A CDC7 inhibitor sensitizes DNA-damaging chemotherapies by suppressing homologous recombination repair to delay DNA damage recovery[J]. Sci Adv, 2021, 7(21):eabf0197.
53
Morita TY, Yu J, Kashima Y, et al. CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade[J]. Nat Commun, 2023, 14(1):7490.
54
Cheng AN, Lo YK, Lin YS, et al. Identification of novel Cdc7 Kinase inhibitors as anti-cancer agents that target the interaction with Dbf4 by the fragment complementation and drug repositioning approach[J]. EBioMedicine, 2018, 36:241-251.
55
Bailly C. Medicinal applications and molecular targets of dequalinium chloride[J]. Biochem Pharmacol, 2021, 186:114467.
56
Almawi AW, Matthews LA, Larasati, et al. 'AND' logic gates at work: crystal structure of Rad53 bound to Dbf4 and Cdc7[J]. Sci Rep, 2016, 6:34237.
57
Li X, Qian X, Jiang H, et al. Nuclear PGK1 alleviates ADP-dependent inhibition of CDC7 to promote DNA replication[J]. Mol Cell, 2018, 72(4):650-660.e8.
58
Makhouri FR, Ghasemi JB. High-throughput docking and molecular dynamics simulations towards the Identification of novel peptidomimetic inhibitors against CDC7[J]. Mol Inform, 2018, 37(11): e1800022.
59
Chen P, Xu Y, Li X, et al. Development and strategies of CDK4/6 inhibitors[J]. Future Med Chem, 2020, 12(2):127-145.
60
Cuzick J, Chu K, Keevil B, et al. Effect of baseline oestradiol serum concentration on the efficacy of anastrozole for preventing breast cancer in postmenopausal women at high risk: a case-control study of the IBIS-II prevention trial[J]. Lancet Oncol, 2024, 25(1):108-116.
No related articles found!
阅读次数
全文


摘要