1 |
张宇飞,潘剑锋,乔永华,等.周期蛋白D与CDK4/6在细胞周期进程中的调控机制[J]. 中国细胞生物学学报, 2023, 45(11):1715-1722.
|
2 |
侯泽宇,唐金茹,李龙江.口腔鳞状细胞癌发生、发展过程中细胞周期调控因子的研究进展[J].口腔颌面外科杂志, 2023, 33(2):119-122.
|
3 |
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: the pleiotropic function of CDK4 in cancer[J]. Semin Cancer Biol, 2024, 98:51-63.
|
4 |
Li N, Gao N, Zhai Y. DDK promotes DNA replication initiation: Mechanistic and structural insights[J]. Curr Opin Struct Biol, 2023, 78:102504. doi: 10.1016/j.sbi.2022.102504.
|
5 |
Bonte D, Lindvall C, Liu H, et al. Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation[J]. Neoplasia, 2008, 10(9):920-931.
|
6 |
Jackson AL, Pahl PM, Harrison K, et al. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein[J]. Mol Cell Biol, 1993, 13(5):2899-2908.
|
7 |
Huse M, Kuriyan J. The conformational plasticity of protein kinases[J]. Cell, 2002, 109(3):275-282.
|
8 |
Petrie MV, Zhang H, Arnold EM, et al. Dbf4 Zn-finger motif is specifically required for stimulation of Ctf19-activated origins in saccharomyces cerevisiae[J]. Genes (Basel), 2022, 13(12):2202. doi: 10.3390/genes13122202.
|
9 |
Cheng J, Li N, Huo Y, et al. Structural insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase[J]. Nat Commun, 2022, 13(1):1396. doi: 10.1038/s41467-022-29070-5.
|
10 |
Dick SD, Federico S, Hughes SM, et al. Structural basis for the activation and target site specificity of CDC7 kinase[J]. Structure, 2020, 28(8):954-962.e4.
|
11 |
Endicott JA, Noble ME, Johnson LN. The structural basis for control of eukaryotic protein kinases[J]. Annu Rev Biochem, 2012, 81:587-613.
|
12 |
Hughes S, Elustondo F, Di Fonzo A, et al. Crystal structure of human CDC7 kinase in complex with its activator DBF4[J]. Nat Struct Mol Biol, 2012, 19(11):1101-1107.
|
13 |
Fang D, Lengronne A, Shi D, et al. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing[J]. Genes Dev, 2017, 31(23-24):2405-2415.
|
14 |
Greiwe JF, Miller TCR, Locke J, et al. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase[J]. Nat Struct Mol Biol, 2022, 29(1):10-20.
|
15 |
Saleh A, Noguchi Y, Aramayo R, et al. The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer[J]. Nat Commun, 2022, 13(1):2915. doi: 10.1038/s41467-022-30576-1.
|
16 |
Abd Wahab S, Remus D. Antagonistic control of DDK binding to licensed replication origins by Mcm2 and Rad53[J]. Elife, 2020, 9:e58571. doi: 10.7554/eLife.58571.
|
17 |
Gillespie PJ, Blow JJ. DDK: the outsourced kinase of chromosome maintenance[J]. Biology (Basel), 2022, 11(6):877. doi: 10.3390/biology11060877.
|
18 |
Yoon HJ, Loo S, Campbell JL. Regulation of Saccharomyces cerevisiae CDC7 function during the cell cycle[J]. Mol Biol Cell, 1993, 4(2):195-208.
|
19 |
Sato N, Sato M, Nakayama M, et al. Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex[J]. Genes Cells, 2003, 8(5):451-463.
|
20 |
Sasi NK, Coquel F, Lin YL, et al. DDK has a primary role in processing stalled replication forks to initiate downstream checkpoint signaling[J]. Neoplasia, 2018, 20(10):985-995.
|
21 |
Larasati, Duncker BP. Mechanisms governing DDK regulation of the initiation of DNA replication[J]. Genes(Basel), 2016, 8(1):3. doi: 10.3390/genes8010003.
|
22 |
Zhang H, Petrie MV, He Y, et al. Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins[J]. Elife, 2019, 8:e45512. doi: 10.7554/eLife.45512.
|
23 |
Weinreich M, Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway[J]. EMBO J, 1999, 18(19):5334-5346.
|
24 |
Zhang L, Hong J, Chen W, et al. DBF4 dependent kinase inhibition suppresses hepatocellular carcinoma progression and potentiates anti-programmed cell death-1 therapy[J]. Int J Biol Sci, 2023, 19(11): 3412-3427.
|
25 |
Wang M, Qiu ZH, Wang YZ, et al. Analysis of the expression and prognostic significance of DDK complex in hepatocarcinoma[J]. BMC Cancer, 2023, 23(1): 19.
|
26 |
Liu Z, Li J, Chen J, et al. MCM family in HCC: MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression[J]. BMC Cancer, 2018, 18(1): 200.
|
27 |
Hanna A, Nixon MJ, Estrada MV, et al. Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer[J]. Breast Cancer Res, 2022, 24(1): 51.
|
28 |
Spurgers KB, Gold DL, Coombes KR, et al. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression[J]. J Biol Chem, 2006, 281(35):25134-25142.
|
29 |
Qi Y, Hou Y, Qi L. miR-30d-5p represses the proliferation, migration, and invasion of lung squamous cell carcinoma via targeting DBF4[J]. J Environ Sci Health C Toxicol Carcinog, 2021, 39(3):251-268.
|
30 |
Sasi NK, Bhutkar A, Lanning NJ, et al. DDK promotes tumor chemoresistance and survival via multiple pathways [J]. Neoplasia, 2017, 19(5):439-450.
|
31 |
Bourcier K, Le Cesne A, Tselikas L, et al. Basic knowledge in soft tissue sarcoma[J]. Cardiovasc Intervent Radiol, 2019, 42(9):1255-1261.
|
32 |
Pappo AS, Dirksen U. Rhabdomyosarcoma, ewing sarcoma, and other round cell sarcomas[J]. J Clin Oncol, 2018, 36(2):168-179.
|
33 |
Ma H, Yu H, Li Z, et al. β-carboline dimers inhibit the tumor proliferation by the cell cycle arrest of sarcoma through intercalating to Cyclin-A2[J]. Front Immunol, 2022, 13:922183.
|
34 |
Martin JC, Sims JR, Gupta A, et al. CDC7 kinase (DDK) inhibition disrupts DNA replication leading to mitotic catastrophe in ewing sarcoma[J]. Cell Death Discov, 2022, 8(1):85.
|
35 |
Wang T, Ji R, Liu G, et al. Lactate induces aberration in the miR-30a-DBF4 axis to promote the development of gastric cancer and weakens the sensitivity to 5-Fu[J]. Cancer Cell Int, 2021, 21(1):602.
|
36 |
Nambiar S, Mirmohammadsadegh A, Hassan M, et al. Identification and functional characterization of ASK/Dbf4, a novel cell survival gene in cutaneous melanoma with prognostic relevance[J]. Carcinogenesis, 2007, 28(12):2501-2510.
|
37 |
徐明,薛波新,阳东荣,等.肾透明细胞癌中具有预后预测价值免疫相关基因的筛选[J].现代泌尿生殖肿瘤杂志, 2022, 14(1):8-15.
|
38 |
Kase AM, George DJ, Ramalingam S. Clear cell renal cell carcinoma: from biology to treatment[J]. Cancers (Basel), 2023, 15(3):665.
|
39 |
de Boussac H, Bruyer A, Jourdan M, et al. Kinome expression profiling to target new therapeutic avenues in multiple myeloma[J]. Haematologica, 2020, 105(3):784-795.
|
40 |
Zhen Y, Fu H, Si L, et al. Expression of MCMs in endometrial cancer and its biological correlation analysis [J]. Comb Chem High Throughput Screen, 2023, 26(4):815-825.
|
41 |
Pauzaite T, Tollitt J, Sopaci B, et al. Dbf4-Cdc7 (DDK) inhibitor PHA-767491 displays potent anti-proliferative effects via crosstalk with the CDK2-RB-E2F pathway[J]. Biomedicines, 2022, 10(8):2012.
|
42 |
Swords R, Mahalingam D, O'Dwyer M, et al. Cdc7 kinase-a new target for drug development[J]. Eur J Cancer, 2010, 46(1):33-40.
|
43 |
Ito S, Taniyami C, Arai N, et al. Cdc7 as a potential new target for cancer therapy[J]. Drug News Perspect, 2008, 21(9):481-488.
|
44 |
McLaughlin RP, He J, van der Noord VE, et al. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy[J]. Breast Cancer Res, 2019, 21(1):77.
|
45 |
Koltun ES, Tsuhako AL, Brown DS, et al. Discovery of XL413, a potent and selective CDC7 inhibitor[J]. Bioorg Med Chem Lett, 2012, 22(11):3727-3731.
|
46 |
Sasi NK, Tiwari K, Soon FF, et al. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds[J]. PLoS One, 2014, 9(11):e113300.
|
47 |
Wang C, Vegna S, Jin H, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer[J]. Nature, 2019, 574(7777):268-272.
|
48 |
Chava S, Bugide S, Malvi P, et al. Co-targeting of specific epigenetic regulators in combination with CDC7 potently inhibit melanoma growth[J]. iScience, 2022, 25(8): 104752.
|
49 |
Deng L, Yang L, Zhu S, et al. Identifying CDC7 as a synergistic target of chemotherapy in resistant small-cell lung cancer via CRISPR/Cas9 screening[J]. Cell Death Discov, 2023, 9(1):40.
|
50 |
Iwai K, Nambu T, Dairiki R, et al. Molecular mechanism and potential target indication of TAK-931, a novel CDC7-selective inhibitor[J]. Sci Adv, 2019, 5(5):eaav3660.
|
51 |
Kurasawa O, Miyazaki T, Homma M, et al. Discovery of a novel, highly potent, and selective thieno[3,2-d]pyrimidinone-based Cdc7 inhibitor with a quinuclidine moiety (TAK-931) as an orally active investigational antitumor agent[J]. J Med Chem, 2020, 63(3):1084-1104.
|
52 |
Iwai K, Nambu T, Kashima Y, et al. A CDC7 inhibitor sensitizes DNA-damaging chemotherapies by suppressing homologous recombination repair to delay DNA damage recovery[J]. Sci Adv, 2021, 7(21):eabf0197.
|
53 |
Morita TY, Yu J, Kashima Y, et al. CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade[J]. Nat Commun, 2023, 14(1):7490.
|
54 |
Cheng AN, Lo YK, Lin YS, et al. Identification of novel Cdc7 Kinase inhibitors as anti-cancer agents that target the interaction with Dbf4 by the fragment complementation and drug repositioning approach[J]. EBioMedicine, 2018, 36:241-251.
|
55 |
Bailly C. Medicinal applications and molecular targets of dequalinium chloride[J]. Biochem Pharmacol, 2021, 186:114467.
|
56 |
Almawi AW, Matthews LA, Larasati, et al. 'AND' logic gates at work: crystal structure of Rad53 bound to Dbf4 and Cdc7[J]. Sci Rep, 2016, 6:34237.
|
57 |
Li X, Qian X, Jiang H, et al. Nuclear PGK1 alleviates ADP-dependent inhibition of CDC7 to promote DNA replication[J]. Mol Cell, 2018, 72(4):650-660.e8.
|
58 |
Makhouri FR, Ghasemi JB. High-throughput docking and molecular dynamics simulations towards the Identification of novel peptidomimetic inhibitors against CDC7[J]. Mol Inform, 2018, 37(11): e1800022.
|
59 |
Chen P, Xu Y, Li X, et al. Development and strategies of CDK4/6 inhibitors[J]. Future Med Chem, 2020, 12(2):127-145.
|
60 |
Cuzick J, Chu K, Keevil B, et al. Effect of baseline oestradiol serum concentration on the efficacy of anastrozole for preventing breast cancer in postmenopausal women at high risk: a case-control study of the IBIS-II prevention trial[J]. Lancet Oncol, 2024, 25(1):108-116.
|