切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 353 -359. doi: 10.3877/cma.j.issn.2095-1221.2022.06.005

论著

rs37973位点多态性对氟替卡松诱导的Raji和THP-1细胞中GLCCI1基因启动子活性影响
邱彦1, 董雅芬1, 王建1, 吴浩1, 金辉1,()   
  1. 1. 201200 上海市浦东新区人民医院药剂科
  • 收稿日期:2022-06-29 出版日期:2022-12-01
  • 通信作者: 金辉
  • 基金资助:
    浦东新区卫生健康委员会领先人才培养项目(PRWL2020-08)

Effect of rs37973 polymorphism on GLCCI1 gene promoter activity in Raji and THP-1 cells induced by fluticasone

Yan Qiu1, Yafen Dong1, Jian Wang1, Hao Wu1, Hui Jin1,()   

  1. 1. Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
  • Received:2022-06-29 Published:2022-12-01
  • Corresponding author: Hui Jin
引用本文:

邱彦, 董雅芬, 王建, 吴浩, 金辉. rs37973位点多态性对氟替卡松诱导的Raji和THP-1细胞中GLCCI1基因启动子活性影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 353-359.

Yan Qiu, Yafen Dong, Jian Wang, Hao Wu, Hui Jin. Effect of rs37973 polymorphism on GLCCI1 gene promoter activity in Raji and THP-1 cells induced by fluticasone[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(06): 353-359.

目的

通过荧光素酶实验评价rs37973位点多态性对氟替卡松诱导条件下Raji和THP-1细胞中人糖皮质激素诱导转录因子1 (GLCCI1)基因启动子活性的影响。

方法

生物信息学预测并调取人GLCCI1基因启动子,构建rs37973-G和rs37973-A对应的荧光素酶报告基因表达载体并转染细胞,转染后细胞再经1 nmol/L氟替卡松继续处理24 h,后检测不同处理细胞中荧光素酶活性。多组间比较采用单因素方差分析,组间两两比较采用LSD法。

结果

成功获取人GLCCI1基因启动子并构建荧光素酶表达载体pGL3- pro (rs37973-G)和pGL3-pro (rs37973-A)。转染后48 h,与转染对照组比较,Raji和THP-1细胞中报告基因表达载体转染组细胞中荧光素酶活性(23.82±2.79比18.03±2.28,24.52±2.62比19.11±2.37)均升高,差异具有统计学意义(P均< 0.05)。与pGL3- pro (rs37973-G)- GLCCI1转染组比较,1 nmol/ L氟替卡松处理24 h能够分别增强转染后Raji和THP-1细胞中荧光素酶活性(30.05±5.23比18.03±2.28,31.12±4.69比19.11±2.37),差异具有统计学意义(P均< 0.05)。与pGL3-pro (rs37973-A)-GLCCI1转染组比较,1 nmol/ L氟替卡松处理24 h能够分别增强转染后Raji和THP-1细胞中荧光素酶活性(50.03±7.28比23.82±2.79,48.25±5.91比24.52±2.62),差异具有统计学意义(P均< 0.05)。与pGL3- pro (rs37973-G)- GLCCI1转染且经1 nmol/L氟替卡松处理24 h组比较,pGL3-pro (rs37973-A)- GLCCI1转染且经1 nmol/ L氟替卡松处理24 h组Raji和THP-1细胞中荧光素酶活性增强(50.03±7.28比31.02±5.23,48.25±5.91比31.12±4.69),差异具有统计学意义(P均< 0.05)。

结论

rs37973位点突变能够影响Raji与THP-1细胞中GLCCI1基因启动子活性,且与rs37973-A比较,rs37973-G能够更明显降低氟替卡诱导的Raji和THP-1细胞内GLCCI1基因启动子活性。

Objective

To evaluate the effect of rs37973 polymorphism on the promoter activity of GLCCI1 gene in Raji and THP-1 cells induced by fluticasone luciferase method.

Methods

The promoter of the human GLCCI1 gene was predicted by bioinformatics and obtained, and the luciferase vectors corresponding to rs37973-G and rs37973-A were constructed and then transfected into the cells. After treatment with 1 nmol/L fluticasone for 24 h, the luciferase activity in the cells of different treatment groups was detected. One-way ANOVA was used for comparison among multiple groups, and LSD test was used for comparison between groups.

Results

The promoter of the human GLCCI1 gene was successfully obtained, and the luciferase expression vectors pGL3-pro (rs37973-G) and pGL3 pro (rs37973-A) were constructed. 48 h after transfection, compared with the control group, the luciferase activity in Raji and THP-1 cells transfected with reporter vector was statistically significant higher (23.82±2.79 vs 18.03±2.28, 24.52±2.62 vs 19.11±2.37) (P < 0.05) . Compared with pGL3-pro- (rs37973-G) -GLCCI1 transfection group, the luciferase activity in theRaji and THP- 1 cells treated with 1 nmol/L fluticasone for 24 h was significantly increased (30.05±5.23 vs 18.03± 2.28, 31.12±4.69 vs 19.11±2.37) (P < 0.05) . Compared with pGL3-pro (rs37973-A) -GLCCI1 transfection group, the luciferase activity in the Raji and THP-1 cells treated with 1 nmol/ L fluticasone for 24 hours was significantly increased (50.03±7.28 vs 23.82±2.79, 48.25±5.91 vs 24.52± 2.62) (P < 0.05) . Compared with the group transfected with pGL3-pro (rs37973-G) -GLCCI1 and treated with 1 nmol/L fluticasone for 24 h, the luciferase activity in Raji and THP-1 cells transfected with pGL3- pro (rs37973-A) -GLCCI1 and treated with 1 nmol/L fluticasone for 24 h also significantly increased (50.03±7.28 vs 31.02±5.23, 48.25±5.91 vs 31.12±4.69) (P < 0.05) .

Conclusionrs

37973 mutation can affect the promoter activity of GLCCI1, and rs37973-G can significantly reduce activity of GLCCI1 promoter in Raji and THP-1 cells induced by fluticasone.

表1 人GLCCI1rs37973位点PCR及突变引物
图1 生信预测获得的人GLCCI1基因启动子序列
图2 PCR扩增GLCCI1基因启动子注:通过琼脂糖凝胶检测扩增产物大小,琼脂糖浓度为2%;M为DL2000 DNA Marker;1为PCR产物1 μL上样;2为PCR产物5 μL上样;3为不加PCR产物
图3 倒置荧光显微镜下观察细胞中GFP表达注:293细胞转染后48h;a、c图为可见光视场;b、d图为紫外视场
图4 rs37973位点突变型荧光素酶报告基因表达载体序列分析
图5 Raji细胞转染效率检测及不同方式处理后细胞内荧光素酶活性检测注:a ~ b图分别为倒置荧光显微镜下观察细胞转染GFP 48 h后的总细胞数及紫外光下GFP表达的细胞数;c图为荧光素酶活性组间差异分析,荧光素酶活性表示为萤火虫荧光素酶与海肾荧光素酶比值,Fluticasone为氟替卡松;与传染pGL3-pro (rs37973-G)-GLCCI1比较,aP < 0.05,与转染pGL3-pro(rs37973-A)-GLCCI1且经1 nmol/L氟替卡松处理24 h比较,bP < 0.01
图6 THP-1细胞转染效率检测及不同处理后细胞内荧光素酶活性检测注:a ~ b图分别为倒置荧光显微镜下观察细胞转染GFP 48 h后的总细胞数及紫外光下GFP表达的细胞数;c图为荧光素酶活性组间差异分析,荧光素酶活性表示为萤火虫荧光素酶与海肾荧光素酶比值,Fluticasone,氟替卡松;与THP-1+pGL3-pro(rs37973-G)-GLCCI1比较,aP < 0.05,与THP- 1+ pGL3-pro(rs37973-A)-GLCCI1且经1 nmol/L氟替卡松处理24 h比较,bP < 0.01
1
Hu X, Deng S, Luo L, et al. GLCCI1 deficiency induces glucocorticoid resistance via the competitive binding of IRF1:GRIP1 and IRF3:GRIP1 in asthma[J]. Front Med (Lausanne), 2021, 8:686493.doi:10.3389/fmed.2021.686493.
2
Kiuchi Z, Nishibori Y, Kutsuna S, et al. GLCCI1 is a novel protector against glucocorticoid-induced apoptosis in T cells[J]. FASEB J, 2019,33(6):7387-7402.
3
Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma[J]. N Engl J Med, 2011, 365 (13):1173-1183.
4
Xun Q, Hu C, Li X, et al. GLCCI1 rs37973 is associated with the response of adrenal hormone to inhaled corticosteroids in asthma[J]. World Allergy Organ J, 2019,12(3):100017.doi:10.1016/j.waojou.2019.100017.
5
Van den Berge M, Hiemstra PS, Postma DS. Genetics of glucocorticoids in asthma[J]. N Engl J Med, 2011, 365(25):2434-2435.
6
Lei Y, Gao Y, Chen J. GLCCI1 rs37973: a potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese chronic obstructive pulmonary disease patients[J]. Sci Rep, 2017, 7:42552.doi:10.1038/srep42552.
7
Xu Y, Wu H, Wu X, et al. GLCCI1 rs37973: A potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese asthma patients[J]. Medicine (Baltimore), 2017, 96(52):e9442.doi: 10.1097/MD.0000000000009442.
8
Rijavec M, Žavbi M, Lopert A, et al. GLCCI1 polymorphism rs37973 and response to treatment of asthma with inhaled corticosteroids[J]. J Investig Allergol Clin Immunol, 2018, 28(3):165-171.
9
Hirai K, Shirai T, Rachi Y, et al. Impact of gene expression associated with glucocorticoid-induced transcript 1 (GLCCI1) on severe asthma and future exacerbation[J]. Biol Pharm Bull, 2019, 42(10):1746-1752.
10
Edris A, de Roos EW, McGeachie MJ, et al. Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma[J]. Clin Exp Allergy, 2022, 52(1):33-45.
11
Mekov E, Nuñez A, Sin DD, et al. Update on ssthma-COPD overlap (ACO): a narrative review[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:1783-1799.
12
Roman-Rodriguez M, Kaplan A. GOLD 2021 Strategy Report: Implications for Asthma-COPD Overlap[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:1709-1715.
13
Arpinelli F, Nucera F, Ruggeri P, et al. [Risk of diabetes mellitus during regular long-term inhaled glucocorticoid treatment in COPD patients: narrative review of the literature] [Article in Italian] [J]. Recenti Prog Med, 2021,112(10):668-677.
14
Hernandez-Pacheco N, Gorenjak M, Li J, et al. Identification of ROBO2 as a potential locus associated with inhaled corticosteroid response in childhood asthma[J]. J Pers Med, 2021,11(8):733.doi: 10.3390/jpm11080733.
15
Obeidat M, Faiz A, Li X, et al. The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD[J]. Eur Respir J, 2019, 54(6):1900521.doi: 10.1183/13993003.00521-2019.
16
Tantisira KG, Lake S, Silverman ES, et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids[J]. Hum Mol Genet, 2004, 13(13):1353-1359.
17
Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma[J]. N Engl J Med, 2011, 365:1173-1183.
18
Rijavec M, Žavbi M, Lopert A, et al. GLCCI1 polymor-phism rs37973 and asthma treatment response to inhaled corticosteroids[J]. J Investig Allergol Clin Immunol, 2018, 28(3):165-171.
[1] 陈莉, 陈雪松. 基因多态性对芳香化酶抑制剂疗效的影响[J]. 中华乳腺病杂志(电子版), 2021, 15(02): 112-116.
[2] 欧阳鲁平, 覃秀云, 韦慧, 易赏, 张月, 桂宝恒. 单核苷酸多态性微阵列芯片技术在侧脑室增宽胎儿产前诊断中的应用价值[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(03): 322-328.
[3] 滑明溪, 袁临天, 李昂. 稳定表达荧光素酶的产酸克雷伯菌在评估不同灭菌方法中的应用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(04): 272-277.
[4] 史昌河, 宋秀云, 魏阳, 周永. 青岛地区宿主IL-28B基因多态性及HCV基因型对慢性丙型肝炎抗病毒疗效的影响[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(01): 45-50.
[5] 闫铭锋, 李晓波, 苏扬, 李婷, 陈苗, 柴阳. 趋化因子受体6基因与陕西汉中地区类风湿关节炎汉族人群相关性[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(02): 193-199.
[6] 李强强, 余晓波, 周琳, 李鸿, 翟政龙, 郑树森. YTHDF1单核苷酸多态性在符合杭州标准肝移植受者术后肝癌复发中的预测价值[J]. 中华移植杂志(电子版), 2020, 14(06): 337-342.
[7] 谢心怡, 胡宇翔, 席凡捷. 普仑司特联合丙酸氟替卡松治疗小儿哮喘的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 100-102.
[8] 杜德慧, 王兴东, 王玥坤, 吴安妮, 吴波, 邢婧. 沙美特罗-丙酸氟替卡松治疗慢性阻塞性肺疾病的疗效分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 496-499.
[9] 魏胜全, 薛华, 薛慧君. 糠酸氟替卡松/维兰特罗对慢性阻塞性肺疾病急性发作期的影响[J]. 中华肺部疾病杂志(电子版), 2020, 13(05): 602-606.
[10] 吴天勇, 陈宏斌, 程丹. HHIP基因rs13118928单核苷酸多态性与慢性阻塞性肺疾病易感性的荟萃分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 420-425.
[11] 张丽娜, 李征然, 黄明声, 王劲, 郭若汨, 唐文杰. 海肾荧光素酶基因标记肝癌细胞生物发光成像在小鼠肝癌活体示踪中应用[J]. 中华肝脏外科手术学电子杂志, 2017, 06(06): 504-508.
[12] 苟苗苗, 张勇, 千年松, 司海燕, 高云鹤, 陈凛, 戴广海. DPYD、ABCB1、GSTP1、ERCC1基因多态性与晚期结肠癌临床特征、不良反应、预后的关系[J]. 中华结直肠疾病电子杂志, 2019, 08(02): 125-130.
[13] 禹晓童, 王震宇, 黄琛, 吕会斌, 张明洲, 李学民, 敖明昕. 先天性白内障相关基因热休克转录因子4非同义单核苷酸多态性高危致病表型的预测研究[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 96-104.
[14] 宋波, 程云, 姜玉章, 沈冲, 薛永, 李婴慧. MicroRNA-938及其靶基因TGFBR1单核苷酸多态性与出血性脑卒中的关联研究[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(04): 205-209.
[15] 刘子瑜, 问苏荣, 王小清, 祁兴, 郝海荣, 卢艳文, 李京, 李莎燕, 俞伟男, 周红文, 胡文. PPM1K基因rs1440581、rs7678928位点单核苷酸多态性对血清支链氨基酸水平的影响及其与心血管疾病的关系[J]. 中华临床医师杂志(电子版), 2020, 14(12): 953-961.
阅读次数
全文


摘要