1 |
Hu X, Deng S, Luo L, et al. GLCCI1 deficiency induces glucocorticoid resistance via the competitive binding of IRF1:GRIP1 and IRF3:GRIP1 in asthma[J]. Front Med (Lausanne), 2021, 8:686493.doi: 10.3389/fmed.2021.686493.
|
2 |
Kiuchi Z, Nishibori Y, Kutsuna S, et al. GLCCI1 is a novel protector against glucocorticoid-induced apoptosis in T cells[J]. FASEB J, 2019,33(6):7387-7402.
|
3 |
Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma[J]. N Engl J Med, 2011, 365 (13):1173-1183.
|
4 |
Xun Q, Hu C, Li X, et al. GLCCI1 rs37973 is associated with the response of adrenal hormone to inhaled corticosteroids in asthma[J]. World Allergy Organ J, 2019, 12(3):100017.doi: 10.1016/j.waojou.2019.100017.
|
5 |
Van den Berge M, Hiemstra PS, Postma DS. Genetics of glucocorticoids in asthma[J]. N Engl J Med, 2011, 365(25):2434-2435.
|
6 |
Lei Y, Gao Y, Chen J. GLCCI1 rs37973: a potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese chronic obstructive pulmonary disease patients[J]. Sci Rep, 2017, 7:42552.doi: 10.1038/srep42552.
|
7 |
Xu Y, Wu H, Wu X, et al. GLCCI1 rs37973: A potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese asthma patients[J]. Medicine (Baltimore), 2017, 96(52):e9442.doi: 10.1097/MD.0000000000009442.
|
8 |
Rijavec M, Žavbi M, Lopert A, et al. GLCCI1 polymorphism rs37973 and response to treatment of asthma with inhaled corticosteroids[J]. J Investig Allergol Clin Immunol, 2018, 28(3):165-171.
|
9 |
Hirai K, Shirai T, Rachi Y, et al. Impact of gene expression associated with glucocorticoid-induced transcript 1 (GLCCI1) on severe asthma and future exacerbation[J]. Biol Pharm Bull, 2019, 42(10):1746-1752.
|
10 |
Edris A, de Roos EW, McGeachie MJ, et al. Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma[J]. Clin Exp Allergy, 2022, 52(1):33-45.
|
11 |
Mekov E, Nuñez A, Sin DD, et al. Update on ssthma-COPD overlap (ACO): a narrative review[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:1783-1799.
|
12 |
Roman-Rodriguez M, Kaplan A. GOLD 2021 Strategy Report: Implications for Asthma-COPD Overlap[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:1709-1715.
|
13 |
Arpinelli F, Nucera F, Ruggeri P, et al. [Risk of diabetes mellitus during regular long-term inhaled glucocorticoid treatment in COPD patients: narrative review of the literature] [Article in Italian] [J]. Recenti Prog Med, 2021,112(10):668-677.
|
14 |
Hernandez-Pacheco N, Gorenjak M, Li J, et al. Identification of ROBO2 as a potential locus associated with inhaled corticosteroid response in childhood asthma[J]. J Pers Med, 2021, 11(8):733.doi: 10.3390/jpm11080733.
|
15 |
Obeidat M, Faiz A, Li X, et al. The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD[J]. Eur Respir J, 2019, 54(6):1900521.doi: 10.1183/13993003.00521-2019.
|
16 |
Tantisira KG, Lake S, Silverman ES, et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids[J]. Hum Mol Genet, 2004, 13(13):1353-1359.
|
17 |
Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma[J]. N Engl J Med, 2011, 365:1173-1183.
|
18 |
Rijavec M, Žavbi M, Lopert A, et al. GLCCI1 polymor-phism rs37973 and asthma treatment response to inhaled corticosteroids[J]. J Investig Allergol Clin Immunol, 2018, 28(3):165-171.
|