1 |
Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)[J]. Science, 1983, 220(4599):868-871.
|
2 |
Hu WS, Hughes SH. HIV-1 reverse transcription[J]. Cold Spring Harb Perspect Med, 2012, 2(10):a006882. doi: 10.1101/cshperspect.a006882.
|
3 |
Engelman A, Mizuuchi K, Craigie R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer[J]. Cell, 1991, 67(6):1211-1221.
|
4 |
Brown PO, Bowerman B, Varmus HE, et al. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein[J]. Proc Natl Acad Sci U S A, 1989, 86(8):2525-2529.
|
5 |
Krishnan L, Li X, Naraharisetty HL, et al. Structure-based modeling of the functional HIV-1 intasome and its inhibition[J]. Proc Natl Acad Sci U S A, 2010, 107(36):15910-15915.
|
6 |
Hare S, Gupta SS, Valkov E, et al. Retroviral intasome assembly and inhibition of DNA strand transfer[J]. Nature, 2010, 464(7286):232-236.
|
7 |
Maertens G, Cherepanov P, Pluymers W, et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells[J]. J Biol Chem, 2003, 278(35):33528-33539.
|
8 |
Ciuffi A, Llano M, Poeschla E, et al. A role for LEDGF/p75 in targeting HIV DNA integration[J]. Nat Med, 2005, 11(12):1287-1289.
|
9 |
Lapaillerie D, Lelandais B, Mauro E, et al. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75[J]. Nucleic Acids Res, 2021, 49(19):11241-11256.
|
10 |
Kessl JJ, Kutluay SB, Townsend D, et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis[J]. Cell, 2016, 166(5):1257-1268.e1212.
|
11 |
Elliott JL, Eschbach JE, Koneru PC, et al. Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis[J]. Elife, 2020, 9:e54311. doi: 10.7554/eLife.54311.
|
12 |
Elliott JL, Kutluay SB. Going beyond integration: the emerging role of HIV-1 integrase in virion morphogenesis[J]. Viruses, 2020, 12(9):1005. doi: 10.3390/v12091005.
|
13 |
Summa V, Petrocchi A, Bonelli F, et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection[J]. J Med Chem, 2008, 51(18):5843-5855.
|
14 |
Pommier Y, Johnson AA, Marchand C. Integrase inhibitors to treat HIV/AIDS[J]. Nat Rev Drug Discov, 2005, 4(3):236-248.
|
15 |
Johnson AA, Marchand C, Pommier Y. HIV-1 integrase inhibitors: a decade of research and two drugs in clinical trial[J]. Curr Top Med Chem, 2004, 4(10):1059-1077.
|
16 |
Wang Y, Gu S X, He Q, et al. Advances in the development of HIV integrase strand transfer inhibitors[J]. Eur J Med Chem, 2021, 225:113787. doi: 10.1016/j.ejmech.2021.113787.
|
17 |
Smith SJ, Zhao XZ, Passos DO, et al. Integrase strand transfer inhibitors are effective Anti-HIV drugs[J]. Viruses, 2021, 13(2):205. doi: 10.3390/v13020205.
|
18 |
Mbhele N, Chimukangara B, Gordon M. HIV-1 integrase strand transfer inhibitors: a review of current drugs, recent advances and drug resistance[J]. Int J Antimicrob Agents, 2021, 57(5):106343. doi: 10.1016/j.ijantimicag.2021.106343.
|
19 |
Karimi N, Roudsari RV, Hajimahdi Z, et al. Design, synthesis, and docking studies of thioimidazolyl diketoacid derivatives targeting HIV- 1 integrase[J]. Med Chem, 2022, 18(5):616-628.
|
20 |
Adu-Ampratwum D, Pan Y, Koneru PC, et al. Identification and optimization of a Novel HIV-1 integrase inhibitor[J]. ACS Omega, 2022, 7(5):4482-4491.
|
21 |
Parvez MK, Al-Dosari MS, Sinha GP. Machine learning-based predictive models for identifying high active compounds against HIV-1 integrase[J]. SAR QSAR Environ Res, 2022, 33(5):387-402.
|
22 |
Zhang C, Xie Q, Wan CC, et al. Recent advances in small-molecule HIV-1 integrase inhibitors[J]. Curr Med Chem, 2021, 28(24):4910-4934.
|
23 |
Ohata Y, Tomonaga M, Watanabe Y, et al. Antiviral activity and resistance profile of the novel HIV-1 non-catalytic site integrase inhibitor JTP-0157602[J]. J Virol, 2022, 96(6):e0184321.doi: 10.1128/JVI.01843-21.
|
24 |
Taoda Y, Akiyama T, Tomita K, et al. Discovery of tricyclic HIV-1 integrase-LEDGF/p75 allosteric inhibitors by intramolecular direct arylation reaction[J]. Bioorg Med Chem Lett, 2022, 64:128664. doi: 10.1016/j.bmcl.2022.128664.
|
25 |
Sugiyama S, Akiyama T, Taoda Y, et al. Discovery of novel HIV-1 integrase-LEDGF/p75 allosteric inhibitors based on a pyridine scaffold forming an intramolecular hydrogen bond[J]. Bioorg Med Chem Lett, 2021, 33:127742. doi: 10.1016/j.bmcl.2020.127742.
|
26 |
Debyser Z, Bruggemans A, Van Belle S, et al. LEDGINs, inhibitors of the interaction between HIV-1 integrase and LEDGF/p75, are potent antivirals with a potential to cure HIV infection[J]. Adv Exp Med Biol, 2021, 1322:97-114.
|
27 |
Maehigashi T, Ahn S, Kim UI, et al. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site[J]. PLoS Pathog, 2021, 17(7):e1009671.doi: 10.1371/journal.ppat.1009671.
|
28 |
Rashamuse TJ, Fish MQ, Coyanis EM, et al. Studies towards the design and synthesis of novel 1,5-Diaryl-1H-imidazole-4-carboxylic acids and 1,5-Diaryl-1H-imidazole-4-carbohydrazides as host LEDGF/p75 and HIV-1 integrase interaction inhibitors[J]. Molecules, 2021, 26(20):6203. doi: 10.3390/molecules26206203.
|
29 |
Panwar U, Singh SK. In silico virtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/p75 interaction using E-pharmacophore modeling, molecular docking, and dynamics simulations[J]. Comput Biol Chem, 2021, 93:107509. doi: 10.1016/j.compbiolchem.2021.107509.
|
30 |
Kessl JJ, Jena N, Koh Y, et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors[J]. J Biol Chem, 2012, 287(20):16801-16811.
|
31 |
Tsiang M, Jones GS, Niedziela-Majka A, et al. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action[J]. J Biol Chem, 2012, 287(25):21189-21203.
|
32 |
Balakrishnan M, Yant SR, Tsai L, et al. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells[J]. PLoS One, 2013, 8(9):e74163. doi: 10.1371/journal.pone.0074163.
|
33 |
Jurado KA, Wang H, Slaughter A, et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation[J]. Proc Natl Acad Sci U S A, 2013, 110(21):8690-8695.
|
34 |
Eijkelenboom AP, van den Ent FM, Vos A, et al. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc[J]. Curr Biol, 1997, 7(10):739-746.
|
35 |
Goldgur Y, Dyda F, Hickman AB, et al. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium[J]. Proc Natl Acad Sci U S A, 1998, 95(16):9150-9154.
|
36 |
Sangeetha B, Muthukumaran R, Amutha R. The dynamics of interconverting D- and E-forms of the HIV-1 integrase N-terminal domain[J]. Eur Biophys J, 2014, 43(10-11):485-498.
|
37 |
Zheng R, Jenkins TM, Craigie R. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity[J]. Proc Natl Acad Sci U S A, 1996, 93(24):13659-13664.
|
38 |
Cherepanov P, Ambrosio AL, Rahman S, et al. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75[J]. Proc Natl Acad Sci U S A, 2005, 102(48):17308-17313.
|
39 |
Hare S, Shun MC, Gupta SS, et al. A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75[J]. PLoS Pathog, 2009, 5(1):e1000259. doi: 10.1371/journal.ppat.1000259.
|
40 |
Knyazhanskaya E, Anisenko A, Shadrina O, et al. NHEJ pathway is involved in post-integrational DNA repair due to Ku70 binding to HIV-1 integrase[J]. Retrovirology, 2019, 16(1):30. doi: 10.1186/s12977-019-0492-z.
|
41 |
Cereseto A, Manganaro L, Gutierrez MI, et al. Acetylation of HIV-1 integrase by p300 regulates viral integration[J]. EMBO J, 2005, 24(17):3070-3081.
|
42 |
Terreni M, Valentini P, Liverani V, et al. GCN5-dependent acetylation of HIV-1 integrase enhances viral integration[J]. Retrovirology, 2010, 7:18. doi: 10.1186/1742-4690-7-18.
|
43 |
Winans S, Goff S P. Mutations altering acetylated residues in the CTD of HIV-1 integrase cause defects in proviral transcription at early times after integration of viral DNA[J]. PLoS Pathog, 2020, 16(12):e1009147. doi: 10.1371/journal.ppat.1009147.
|
44 |
Schneider W M, Wu DT, Amin V, et al. MuLV IN mutants responsive to HDAC inhibitors enhance transcription from unintegrated retroviral DNA[J]. Virology, 2012, 426(2):188-196.
|