切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (04) : 231 -239. doi: 10.3877/cma.j.issn.2095-1221.2021.04.006

论著

脂肪基质血管组分对兔跟腱损伤修复的研究
林顺1, 林荆鹏1, 陈津2, 王万明3, 韩雪松3,()   
  1. 1. 350004 福州,福建医科大学福总临床医学院;350001 福州,解放军联勤保障部队第九〇〇医院骨二科
    2. 350001 福州,福建省干细胞应用工程技术研究中心
    3. 350001 福州,解放军联勤保障部队第九〇〇医院骨二科
  • 收稿日期:2021-01-08 出版日期:2021-08-01
  • 通信作者: 韩雪松
  • 基金资助:
    福建省自然科学基金(2018J01356); 军队重大项目合作项目(AWS16J032)

Repairment of anchilles tendon injury by adipose derived stromal vascular fraction in rabbits

Shun Lin1, Jingpeng Lin1, Jin Chen2, Wanming Wang3, Xuesong Han3,()   

  1. 1. Clinical Institute of Fuzhou General Hospital, Fujian Medical University, Fuzhou 350001, China; Second Department of Orthopaedics, 900 Hospital of the Joint Logistics Team, Fuzhou 350001, China
    2. Fujian Provincial Stem Cell Application Engineering Technology Research Center, Fuzhou 350001, China
    3. Second Department of Orthopaedics, 900 Hospital of the Joint Logistics Team, Fuzhou 350001, China
  • Received:2021-01-08 Published:2021-08-01
  • Corresponding author: Xuesong Han
引用本文:

林顺, 林荆鹏, 陈津, 王万明, 韩雪松. 脂肪基质血管组分对兔跟腱损伤修复的研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 231-239.

Shun Lin, Jingpeng Lin, Jin Chen, Wanming Wang, Xuesong Han. Repairment of anchilles tendon injury by adipose derived stromal vascular fraction in rabbits[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(04): 231-239.

目的

探讨肌腱内注射脂肪来源的基质血管组分(SVF)对兔跟腱损伤的修复作用。

方法

采用前列腺素E2诱导兔跟腱损伤模型,造模组注射前列腺素E2,空白对照组注射等剂量的生理盐水,超声检查、HE染色和Masson染色评估造模情况。损伤模型成模后,将造模组随机分为2组,SVF治疗组于跟腱局部注射兔子来源的脂肪SVF,模型对照组注射等剂量的生理盐水,分别于治疗后第3、8周,与空白对照组共同进行超声检查,并取跟腱组织标本行组织学检查及免疫组化测定Ⅰ型、Ⅲ型胶原的表达,多组间比较采用单因素方差分析,进一步通过LSD进行组间多重比较。

结果

前列腺素E2诱导后,超声结果显示肌腱局部肿胀,回声强度不均匀;HE染色及Masson染色结果可见明显的纤维断裂、血管增生、炎症细胞浸润和脂肪变性。与模型对照组相比,SVF组治疗后第3、8周低回声区域缩小,纤维结构改善,炎症细胞减少,Ⅰ型(第3周:0.2948±0.0126比0.3186±0.0108,第8周:0.3127±0.0157比0.3427±0.0138)、Ⅲ型胶原蛋白表达含量(第3周:0.2815±0.0143比0.3025±0.0141,第8周:0.2981±0.0153比0.3213±0.0104)均升高,差异有统计学意义(P均< 0.05)。

结论

SVF能减轻肌腱的炎症反应,改善胶原纤维结构和形态,上调Ⅰ型、Ⅲ型胶原蛋白表达水平,促进兔跟腱损伤的愈合。

Objective

To investigate the effects of intratendinous injection of adipose-derived stromal vascular fraction (SVF) on the repair of rabbit Achilles tendon injury.

Methods

Rabbit Achilles tendon injury model was induced by prostaglandin E2 (PGE2) . The injury model group received PGE2 injections, while the non-injury control group was injected with equal doses of saline. Ultrasonography, HE staining and Masson staining were used to evaluate the modeling. And the model group were randomly divided into two groups. The SVF treatment group was injected with rabbit-derived adipose SVF locally in the Achilles tendon, and the model control group was injected with equal doses of saline, respectively. Then, at 3 and 8 weeks after treatment, ultrasonography examination was performed. Achilles tendon tissue samples were obtained and examined histologically. Expression of collagen I and III was determined immunohistochemically. One-way ANOVA was used between multiple groups, with further multiple comparisons between groups performed by LSD.

Results

Ultrasound results revealed that tendon tissue had localized swelling and heterogeneous internal echoes after the induction of PGE2. The results of HE and Masson staining revealed visible fiber fracture, vascular proliferation, inflammatory cell infiltration, and fatty degeneration. Compared with model control group, the hypoechogenicity and inflammatory cells were reduced, the structure of fibers was improved and inflammatory cells were reduced in SVF group was at 3 and 8 weeks after treatment, and the expression of collagen I (week 3: 0.2948 ± 0.0126 vs 0.3186 ± 0.0108, week 8: 0.3127 ± 0.0157 vs 0.3427 ± 0.0138) , collagen III (week 3: 0.2815 ± 0.0143 vs 0.3025 ± 0.0141, week 8: 0.2981 ± 0.0153 vs 0.3213 ± 0.0104) was all increased. All differences were considered statistically significant (all P < 0.05) .

Conclusions

SVF can reduce the inflammatory reaction of tendon, improve the structure and morphology of collagen fiber, up-regulate the expression level of collagen I and III, and promote the healing of Achilles tendon injury in rabbits.

图1 肌腱造模效果的常规超声图像对比
图3 正置光学显微镜观察两组造模情况(Masson染色,×100)。a图为空白对照组,b图为造模组;空白对照组纤维结构完好,排列整齐;造模组纤维结构紊乱,断裂明显,多处不规则卷曲
图4 二维超声观察治疗后各组跟腱组织
图5 彩色多普勒超声观察治疗后各组跟腱组织血流
图6 正置光学显微镜观察各组跟腱组织的治疗结果(HE染色,×100)
图7 正置光学显微镜观察各组跟腱组织的治疗结果(Masson染色,×100)
图8 正置光学显微镜观察各组跟腱组织的Ⅰ型胶原表达情况(免疫组化染色,×200)
图9 正置光学显微镜观察各组跟腱组织的Ⅲ型胶原表达情况(免疫组化染色,×200)
表1 治疗后各组跟腱组织的Ⅰ型、Ⅲ型胶原蛋白表达水平( ± s
1
Sharma P, Maffulli N. Tendinopathy and tendon injury: the future[J]. DisabilRehabil, 2008, 30(20-22):1733-1745.
2
Kaux JF, Forthomme B, Goff CL, et al. Current opinions on tendinopathy[J]. J Sports Sci Med, 2011, 10(2):238-253.
3
Scott A, Ashe MC. Common tendinopathies in the upper and lower extremities[J]. Curr Sports Med Rep, 2006, 5(5):233-241.
4
Oshita T, Tobita M, Tajima S, et al. Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model[J]. Am J Sports Med, 2016, 44(8):1983-1989.
5
Jo CH, Chai JW, Jeong EC, et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial[J]. Stem Cells, 2018, 36(9):1441-1450.
6
Gulotta LV, Kovacevic D, Packer JD, et al. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model[J]. Am J Sports Med, 2011, 39(6):1282-1289.
7
Riordan NH, Ichim TE, Min WP, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis[J]. J Transl Med, 2009, 7:29.doi: 10.1186/1479-5876-7-29.
8
Tan Q, Lui PP, Rui YF, et al. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering[J]. Tissue Eng Part A, 2012, 18(7-8):840-851.
9
You D, Jang MJ, Kim BH, et al. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury[J]. Stem Cells Transl Med, 2015, 4(4):351-358.
10
Nixon AJ, Dahlgren LA, Haupt JL, et al. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis[J]. Am J Vet Res, 2008, 69(7):928-937.
11
Behfar M, Sarrafzadeh-Rezaei F, Hobbenaghi R, et al. Enhanced mechanical properties of rabbit flexor tendons in response to intratendinous injection of adipose derived stromal vascular fraction[J]. Curr Stem Cell Res Ther, 2012, 7(3):173-178.
12
Behfar M, Javanmardi S, Sarrafzadeh-Rezaei F. Comparative study on functional effects of allotransplantation of bone marrow stromal cells and adipose derived stromal vascular fraction on tendon repair: a biomechanical study in rabbits[J]. Cell J, 2014, 16(3):263-270.
13
von Rickenbach KJ, Borgstrom H, Tenforde A, et al. Achilles tendinopathy: evaluation, rehabilitation, and prevention[J]. Curr Sports Med Rep, 2021, 20(6):327-334.
14
Khan MH, Li Z, Wang JH. Repeated exposure of tendon to prostaglandin-E2 leads to localized tendon degeneration[J]. Clin J Sport Med, 2005, 15(1):27-33.
15
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. MolBiol Cell, 2002, 13(12):4279-4295.
16
Albano D, Messina C, Usuelli FG, et al. Magnetic resonance and ultrasound in achillestendinopathy: Predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection[J]. Eur J Radiol, 2017, 95:130-135.
17
Usuelli FG, Grassi M, Maccario C, et al. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(7):2000-2010.
18
Levy BD, Clish CB, Schmidt B, et al. Lipid mediator class switching during acute inflammation: signals in resolution[J]. Nat Immunol, 2001, 2(7):612-619.
19
Wang JH, Jia FY, Yang GG, et al. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study[J]. Connect Tissue Res, 2003, 44(3-4):128-133.
20
Li H, Tang KL, Deng YS, et al. [Effects of exogenous prostaglandin E2 on collagen content of Achilles tendon of rabbits in vivo][J]. Zhongguo Xiu Fu Chong JianWai Ke Za Zhi, 2012, 26(3):352-358.
21
Tran PHT, Malmgaard-Clausen NM, Puggaard RS, et al. Early development of tendinopathy in humans: Sequence of pathological changes in structure and tissue turnover signaling[J]. FASEB J, 2020, 34(1):776-788.
22
Polly SS, Nichols AEC, Donnini E, et al. Adipose-Derived Stromal Vascular Fraction and Cultured Stromal Cells as Trophic Mediators for Tendon Healing[J]. J Orthop Res, 2019, 37(6):1429-1439.
23
Andia I, Maffulli N, Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications[J]. Expert Opin Biol Ther, 2019, 19(12):1289-1305.
24
Raposio E,Simonacci F,Perrotta RE. Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications[J]. Ann Med Surg (Lond), 2017, 20:87-91.
25
Markarian CF, Frey GZ, Silveira MD, et al. Isolation of adipose-derived stem cells: a comparison among different methods[J]. Biotechnol Lett, 2014, 36(4):693-702.
26
Senesi L, De Francesco F, Farinelli L, et al. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results[J]. Front Cell DevBiol, 2019, 7:88.doi: 10.3389/fcell.2019.00088.
27
Culav EM, Clark CH, Merrilees MJ. Connective tissues: matrix composition and its relevance to physical therapy[J]. PhysTher, 1999, 79(3):308-319.
28
Dakin SG, Werling D, Hibbert A, et al. Macrophage sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair[J]. PLoS ONE, 2012, 7(2):e32333.doi: 10.1371/journal.pone.0032333.
29
Zhu M, Xue J, Lu S, et al. Anti-inflammatory effect of stromal vascular fraction cells in fat transplantation[J]. ExpTher Med, 2019, 17(2):1435-1439.
30
Ivanova-Todorova E, Bochev I, Mourdjeva M, et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells[J]. Immunol Lett, 2009, 126(1-2):37-42.
31
Cifù A, Domenis R, Pozzi-Mucelli M, et al. The exposure to osteoarthritic synovial fluid enhances the immunomodulatory profile of adipose mesenchymal stem cell secretome[J]. Stem Cells Int, 2020, 2020:4058760.doi:10.1155/2020/4058760.
32
Nasef A, Chapel A, Mazurier C, et al. Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells[J]. Gene Expr, 2007, 13(4-5):217-226.
33
Casiraghi F, Azzollini N, Cassis P, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells[J]. J Immunol, 2008, 181(6):3933-3946.
34
Bouland C, Philippart P, Dequanter D, et al. Cross-talk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in bone regeneration[J]. Front Cell DevBiol, 2021, 9:674084.doi: 10.3389/fcell.2021.674084.
35
Maffulli N, Moller HD, Evans CH. Tendon healing: can it be optimised?[J]. Br J Sports Med, 2002, 36(5):315-316.
36
Liu SH, Yang RS, al-Shaikh R, et al. Collagen in tendon, ligament, and bone healing. A current review[J]. Clin Orthop Relat Res, 1995, (318):265-278.
37
Behfar M, Sarrafzadeh-Rezaei F, Hobbenaghi R, et al. Adipose-derived stromal vascular fraction improves tendon healing in rabbits[J]. Chin J Traumatol, 2011, 14(6):329-335.
38
Abrahamsson SO, Lundborg G, Lohmander LS. Recombinant human insulin-like growth factor-I stimulates in vitro matrix synthesis and cell proliferation in rabbit flexor tendon[J]. J Orthop Res, 1991, 9(4):495-502.
39
Disser NP, Sugg KB, Talarek JR, et al. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth[J]. FASEB J, 2019, 33(11):12680-12695.
40
Theodossiou SK, Murray JB, Hold LA, et al. Akt signaling is activated by TGFβ2 and impacts tenogenic induction of mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1):88.doi:10.1186/s13287-021-02167-2.
41
Gonçalves AI, Gershovich PM, Rodrigues MT, et al. Human adipose tissue-derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells[J]. J Tissue EngRegen Med, 2018, 12(3):762-774.
[1] 李敏, 邱逦. 健康人群指甲与邻近组织超声测值的初步研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 449-454.
[2] 李春香, 张冬梅, 王娴, 范爱民, 钱晓芹. 高频超声在指伸肌腱止点损伤中的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17(07): 697-702.
[3] 詹钦文, 靳科, 袁家钦. 不同浓度自体富血小板血浆对慢性跟腱损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 500-507.
[4] 刘锐, 郭思佳, 井维斌, 马明明, 曹卫红. 人源性脂肪干细胞对30%体表总面积Ⅲ度烫伤大鼠肺组织炎症反应的影响及其机制初步探讨[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 441-447.
[5] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[6] 王宏宇, 周彪, 闫增强, 侯智慧, 德奇, 杨瑞, 王睿甲, 李洋洋, 黄瑞娟, 巴特. 双层人工真皮联合自体刃厚皮移植修复烧创伤后骨/肌腱外露创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 25-31.
[7] 郝卓伦, 齐雯丽, 孙家明, 周牧冉, 郭能强. 脂肪干细胞促进慢性创面愈合的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 237-242.
[8] 乔梁, 杨向群. 脂肪干细胞在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 230-236.
[9] 施澄熙, 李昊岳, 吴兴源, 邵振兴, 崔国庆. 肩袖补片的治疗现状及研究进展:Meta分析与文献综述[J]. 中华肩肘外科电子杂志, 2023, 11(03): 258-268.
[10] 余洋, 谢冰, 王国梁, 施政良, 熊波涵, 李彦林. 关节镜下肩胛下肌腱部分转位加强修复复发性肩关节前脱位[J]. 中华肩肘外科电子杂志, 2022, 10(03): 203-206.
[11] 周波, 肖颖锋, 王全震, 张建, 周喆刚, 孟繁斌, 彭艳斌. 改良Batemen法斜方肌移位重建肩外展功能[J]. 中华肩肘外科电子杂志, 2021, 09(04): 348-351.
[12] 马秉贤, 张永, 包呼日查, 周慧文, 魏宝刚, 王永祥, 齐岩松, 徐永胜. 基于CT三维模型分析肩胛下肌腱损伤患者喙突形态和位置的研究[J]. 中华肩肘外科电子杂志, 2021, 09(03): 229-235.
[13] 吴清泉, 郑佳鹏, 肖棋, 邓辉云, 林达生. "中国结"缝合技术在镜下治疗肩胛下肌腱损伤的临床应用[J]. 中华肩肘外科电子杂志, 2021, 09(01): 24-29.
[14] 周彤, 尚运涛, 马莹莹, 张延祠, 李军勇. 锚钉技术治疗糖尿病与非糖尿病患者腱性锤状指畸形的疗效分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(01): 29-34.
[15] 王成源, 李东, 安俊学, 卢璐, 朱晓峰. 显微技术辅助皮下内固定法在重睑成形术中的应用[J]. 中华临床医师杂志(电子版), 2020, 14(08): 635-638.
阅读次数
全文


摘要