切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (03) : 179 -183. doi: 10.3877/cma.j.issn.2095-1221.2021.03.007

综述

γδT细胞及其治疗感染性疾病的研究进展
许勰1, 高建莉1,()   
  1. 1. 310053 杭州,浙江中医药大学药学院
  • 收稿日期:2020-09-24 出版日期:2021-06-01
  • 通信作者: 高建莉
  • 基金资助:
    国家自然科学基金(81473575); 浙江省重点实验室项目(2012E10002); 浙江中医药大学校级基金(2019ZG50JL); 浙江省中医药科技计划青年人才基金项目(2019ZQ014)

Advances in research of γδT cells and their anti-infection role

Xie Xu1, JianLi Gao1,()   

  1. 1. College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
  • Received:2020-09-24 Published:2021-06-01
  • Corresponding author: JianLi Gao
引用本文:

许勰, 高建莉. γδT细胞及其治疗感染性疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 179-183.

Xie Xu, JianLi Gao. Advances in research of γδT cells and their anti-infection role[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(03): 179-183.

γδT细胞是一种高度异质性的T淋巴细胞群,根据其表面抗原受体(TCR) γ、δ链的不同可分为多个亚群。γδT细胞有特殊的发育调控模式,不同类型的γδT细胞在迁移到外周组织之前主要在胸腺中产生。除了在肿瘤、自身性免疫疾病中有重要作用之外,γδT细胞亦参与了细菌、真菌、病毒和寄生虫等感染性疾病的防治进程,是抵抗病原体的第一道防线。特别是在感染性疾病早期,激活的γδT细胞发挥了重要作用。本文就γδT细胞的类型、发育与分布、在感染性疾病的独特作用以及活化机制等方面进行综述。

γδT cells are a highly heterogeneous subgroup of T lymphocytes, which can be divided into multiple subtypes according to their surface antigen receptor (T cell receptor, TCR) γ and δ chains. γδT cells have a special developmental regulation mode. Different types of γδT cells are mainly produced in the thymus before migration to peripheral tissues. In addition to having a crucial function in tumors and autoimmune diseases, γδT cells are also involved in the process of depending infections such as bacteria, fungi, viruses and parasites, acting as the first line of defense against pathogens. Especially in the early stage of infection, activated γδT cells play an important role. This article reviews the subsets, development and distribution of γδT cells, their unique roles in infection and their activation mechanisms.

表1 γδT细胞亚群的分类及分布特性
图1 γδT细胞的发育过程
表2 γδT细胞的抗感染功能以及相关机制
1
Brenner MB, McLean J, Dialynas DP, et al. Identification of a putative second t-cell receptor[J]. Nature, 1986, 322(6075):145-149.
2
Bonneville M, O'Brien RL, Born WK. Gammadelta t cell effector functions: a blend of innate programming and acquired plasticity[J]. Nat Rev Immunol, 2010, 10(7):467-478.
3
胡渊,李燕,关妘, 等. 小鼠γδT细胞亚群在不同组织器官的分布特性及在感染后的变化[J]. 中国免疫学杂志, 2016, 32(8):1107-1111+1117.
4
Inoue SI, Niikura M, Asahi H, et al. Preferentially expanding vγ1+γδt cells are associated with protective immunity against plasmodium infection in mice[J]. Eur J Immunol, 2017, 47(4):685-691.
5
Song Y, Li Y, Xiao Y, et al. Neutralization of interleukin-17a alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model[J]. Burns Trauma, 2019, 7:37.
6
Di Marco Barros R, Roberts NA, Dart RJ, et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδt cell compartments[J]. Cell, 2016, 167(1):203-218.e17.
7
Macleod AS, Havran WL. Functions of skin-resident γδt cells[J]. Cell Mol Life Sci, 2011, 68(14):2399-2408.
8
Dunne PJ, Maher CO, Freeley M, et al. CD3ε expression defines functionally distinct subsets of vδ1 t cells in patients with human immunodeficiency virus infection[J]. Front Immunol, 2018, 9:940.
9
Yang Y, Li L, Yuan L, et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated vγ9vδ2t cell activation[J]. Immunity, 2019, 50(4):1043-1053.
10
Cimini E, Sacchi A, De Minicis S, et al. Vδ2 t-cells kill zikv-infected cells by nkg2d-mediated cytotoxicity[J]. Microorganisms, 2019, 7(9):350.
11
Petrasca A, Melo AM, Breen EP, et al. Human vδ3+γδ t cells induce maturation and igm secretion by B cells[J]. Immunol Lett, 2018, 196:126-134.
12
Buus TB, Schmidt JD, Bonefeld CM, et al. Development of interleukin-17-producing vγ2+ γδt cells is reduced by icos signaling in the thymus[J]. Oncotarget, 2016, 7(15):19341-19354.
13
Tan L, Sandrock I, Odak I, et al. Single-cell transcriptomics identifies the adaptation of scart1+ vγ6+t cells to skin residency as activated effector cells[J]. Cell Rep, 2019, 27(12):3657-3671.e4.
14
Muro R, Takayanagi H, Nitta T. T cell receptor signaling for γδt cell development[J]. Inflamm Regen, 2019, 39:6.
15
Havran WL, Allison JP. Developmentally ordered appearance of thymocytes expressing different t-cell antigen receptors[J]. Nature, 1988, 335(6189):443-445.
16
Ciofani M, Knowles GC, Wiest DL, et al. Stage-specific and differential notch dependency at the alphabeta and gammadelta t lineage bifurcation[J]. Immunity, 2006, 25(1):105-116.
17
David A, Ferrick, Pamela S, et al. 胸腺内T细胞的发育和对αβ及γδT细胞的选择作用[J]. 中国免疫学杂, 1990(3):190-193.
18
Shibata K, Yamada H, Nakamura M, et al. Ifn-γ-producing and il-17-producing γδt cells differentiate at distinct developmental stages in murine fetal thymus[J]. J Immunol, 2014, 192(5):2210-2218.
19
Patil RS, Bhat SA, Dar AA, et al. The jekyll and hyde story of il-17-producing γδt cells[J]. Front Immunol, 2015, 6:37.
20
Nakamura K, White AJ, Parnell SM, et al. Differential requirement for ccr4 in the maintenance but not establishment of the invariant vγ5+ dendritic epidermal t-cell pool[J]. PLoS One, 2013, 8(9):e74019.
21
Kisielow J, Kopf M. The origin and fate of γδt cell subsets[J]. Curr Opin Immunol, 2013, 25(2):181-188.
22
Nonaka S, Naito T, Chen H, et al. Intestinal gammadelta t cells develop in mice lacking thymus, all lymph nodes, peyer's patches, and isolated lymphoid follicles[J]. J Immunol, 2005, 174(4):1906-1912.
23
Goodall KJ, Nguyen A, Matsumoto A, et al. Multiple receptors converge on h2-q10 to regulate nk and γδt-cell development[J]. Immunol Cell Biol, 2019, 97(3):326-339.
24
Silva-Santos B, Mensurado S, Coffelt SB. Γδt cells: Pleiotropic immune effectors with therapeutic potential in cancer[J]. Nat Rev Cancer, 2019, 19(7):392-404.
25
Shiromizu CM,Jancic CC. γδ T Lymphocytes: An effector cell in autoimmunity and infection[J]. Front Immunol, 2018, 9:2389.
26
Cavalcanti-Neto MP, Prado RQ, Piñeros AR, et al. Improvement of the resistance against early mycobacterium tuberculosis-infection in the absence of pi3kγ enzyme is associated with increase of cd4+il-17+ cells and neutrophils[J]. Tuberculosis, 2018, 113:1-9.
27
Xu S, Han Y, Xu X, et al. Il-17a-producing gammadeltat cells promote ctl responses against listeria monocytogenes infection by enhancing dendritic cell cross-presentation[J]. J Immunol, 2010, 185(10):5879-5887.
28
Romagnoli PA, Sheridan BS, Pham QM, et al. Il-17a-producing resident memory γδt cells orchestrate the innate immune response to secondary oral listeria monocytogenes infection[J]. Proc Natl Acad Sci U S A, 2016, 113(30):8502-8507.
29
Schmolka N, Papotto PH, Romero PV, et al. Microrna-146a controls functional plasticity in γδ t cells by targeting NOD1[J]. Sci Immunol, 2018, 3(23):eaao1392.
30
Arachchi PS, Fernando N, Weerasekera MM, et al. Proinflammatory cytokine il-17 shows a significant association withhelicobacter pyloriinfection and disease severity[J]. Gastroenterol Res Pract, 2017, 2017:6265150.
31
梁聚友,孙丽妲,庞高举, 等. 产生IL-17的γδT细胞在沙眼衣原体呼吸道感染早期促进中性粒细胞的募集[J]. 中华微生物学和免疫学杂志, 2017, 37(1):1-5.
32
Zhang HJ, Xu B, Wang H, et al. Il-17 is a protection effector against the adherent-invasive escherichia coli in murine colitis[J]. Mol Immunol, 2018, 93:166-172.
33
Omar T, Ziltener P, Chamberlain E, et al. Mice lacking γδt cells exhibit impaired clearance of pseudomonas aeruginosa lung infection and excessive production of inflammatory cytokines[J]. Infect Immun, 2020, 88(6):e00171-20.
34
Mengesha BG, Conti HR. The role of il-17 in protection against mucosal candida infections[J]. J Fungi (Basel), 2017, 3(4):52.
35
Wozniak KL, Kolls JK, Wormley FL Jr. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased il-17a production by γδt cells[J]. BMC Immunol, 2012, 13:65.
36
Sato K, Yamamoto H, Nomura T, et al. Production of il-17a at innate immune phase leads to decreased th1 immune response and attenuated host defense against infection with cryptococcus deneoformans[J]. J Immunol, 2020, 205(3):686-698.
37
殷文伟,张琼方,邵建营, 等. Vδ2 γδT细胞亚群在慢性HCV感染中的特征[J]. 中国免疫学杂志, 2016, 32(9):1346-1349.
38
Chang KM, Traum D, Park JJ, et al. Distinct phenotype and function of circulating vδ1+ and vδ2+ γδt-cells in acute and chronic hepatitis b[J]. PLoS Pathog, 2019, 15(4):e1007715.
39
Xue C, Wen M, Bao L, et al. Vγ4+γδt cells aggravate severe h1n1 influenza virus infection-induced acute pulmonary immunopathological injuryviasecreting interleukin-17a[J]. Front Immunol, 2017, 8:1054.
40
Kaminski H, Ménard C, El Hayani B, et al. Characterization of a unique γδT cell subset as a specific marker of CMV infection severity[J]. J Infect Dis, 2021, 223(4):655-666.
41
徐蕾,胡海燕,王丹丹, 等. Th2型γδT细胞参与急性RSV感染所诱发的气道炎症反应[J]. 微生物学杂志, 2016, 36(5):32-37.
42
吴江,王蕊,画伟, 等. 急性HIV感染者γδ T细胞及其细胞亚群的表型分析[J]. 中国免疫学杂志, 2018, 34(6):887-891.
43
Sheel M, Beattie L, Frame TC, et al. Il-17a-producing γδt cells suppress early control of parasite growth by monocytes in the liver[J]. J Immunol, 2015, 195(12):5707-5717.
44
Deroost K, Langhorne J. Gamma/delta t cells and their role in protection against malaria[J]. Front Immunol, 2018, 9:2973.
45
徐美丽,李超乾,姜晓红, 等. γδT细胞在铜绿假单胞菌肺炎患者外周血和痰液中的分布变化的探讨[J]. 广西医科大学学报, 2013, 30(6):877-880.
46
薛春雪,温铭杰,刘萌, 等. γδT17/Th17/Tc17细胞在H1N1重症感染小鼠肺脏中的分布及其与肺脏免疫损伤的关系[J]. 中国免疫学杂志, 2017, 33(4):563-568.
47
Kim SM, Park M, Yee SM, et al. Axl is a key regulator of intestinal γδT-cell homeostasis[J]. FASEB J, 2019, 33(12):13386-13397.
48
Sumida H, Lu E, Chen H, et al. Gpr55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage[J]. Sci Immunol, 2017, 2(18):eaao1135.
49
Born WK, Kemal Aydintug M, O'Brien RL. Diversity of γδ t-cell antigens[J]. Cell Mol Immunol, 2013, 10(1):13-20.
50
Girard P, Ponsard B, Charles J, et al. Potent bidirectional cross-talk between plasmacytoid dendritic cells and γδt cells through btn3a, type i/ii ifns and immune checkpoints[J]. Front Immunol, 2020, 11:861.
51
Dai YM, Liu HY, Liu YF, et al. Ebv transformation induces overexpression of hmsh2/3/6 on b lymphocytes and enhances γδt-cell-mediated cytotoxicity via tcr and nkg2d[J]. Immunology, 2018, 154(4):673-682.
52
Li Y, Wang X, Teng D, et al. Identification of the ligands of tcrγδ by screening the immune repertoire of γδt cells from patients with tuberculosis[J]. Front Immunol, 2019, 10:2282.
53
Fernandez MA, Yu U, Ferguson AL, et al. Murine skin-resident γδt cells impair the immune response to hsv in skin[J]. Infect Disord Drug Targets, 2020, 20(3):309-317.
54
Li F, Hao X, Chen Y, et al. The microbiota maintain homeostasis of liver-resident γδt-17 cells in a lipid antigen/cd1d-dependent manner[J]. Nat Commun, 2017, 7:13839.
55
Torres-Hernandez A, Wang W, Nikiforov Y, et al. γδt cells promote steatohepatitis by orchestrating innate and adaptive immune programming[J]. Hepatology, 2020, 71(2):477-494.
56
Guenot M, Loizon S, Howard J, et al. Phosphoantigen burst upon plasmodium falciparum schizont rupture can distantly activate vγ9vδ2 t cells[J]. Infect Immun, 2015, 83(10):3816-3824.
57
Lu H, Li DJ, Jin LP. γδt cells and related diseases[J]. Am J Reprod Immunol, 2016, 75(6):609-618.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[3] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[4] 闫凯悦, 邓慧玲, 张玉凤, 席淼, 李雨欣. 单核细胞趋化蛋白-1在感染性疾病中研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 217-221.
[5] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[6] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[7] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[8] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[9] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[10] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[11] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 沈丘月, 侯新琳. n-3多不饱和脂肪酸脑保护机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 471-478.
阅读次数
全文


摘要