切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (03) : 179 -183. doi: 10.3877/cma.j.issn.2095-1221.2021.03.007

综述

γδT细胞及其治疗感染性疾病的研究进展
许勰1, 高建莉1,()   
  1. 1. 310053 杭州,浙江中医药大学药学院
  • 收稿日期:2020-09-24 出版日期:2021-06-01
  • 通信作者: 高建莉
  • 基金资助:
    国家自然科学基金(81473575); 浙江省重点实验室项目(2012E10002); 浙江中医药大学校级基金(2019ZG50JL); 浙江省中医药科技计划青年人才基金项目(2019ZQ014)

Advances in research of γδT cells and their anti-infection role

Xie Xu1, JianLi Gao1,()   

  1. 1. College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
  • Received:2020-09-24 Published:2021-06-01
  • Corresponding author: JianLi Gao
引用本文:

许勰, 高建莉. γδT细胞及其治疗感染性疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 179-183.

Xie Xu, JianLi Gao. Advances in research of γδT cells and their anti-infection role[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(03): 179-183.

γδT细胞是一种高度异质性的T淋巴细胞群,根据其表面抗原受体(TCR) γ、δ链的不同可分为多个亚群。γδT细胞有特殊的发育调控模式,不同类型的γδT细胞在迁移到外周组织之前主要在胸腺中产生。除了在肿瘤、自身性免疫疾病中有重要作用之外,γδT细胞亦参与了细菌、真菌、病毒和寄生虫等感染性疾病的防治进程,是抵抗病原体的第一道防线。特别是在感染性疾病早期,激活的γδT细胞发挥了重要作用。本文就γδT细胞的类型、发育与分布、在感染性疾病的独特作用以及活化机制等方面进行综述。

γδT cells are a highly heterogeneous subgroup of T lymphocytes, which can be divided into multiple subtypes according to their surface antigen receptor (T cell receptor, TCR) γ and δ chains. γδT cells have a special developmental regulation mode. Different types of γδT cells are mainly produced in the thymus before migration to peripheral tissues. In addition to having a crucial function in tumors and autoimmune diseases, γδT cells are also involved in the process of depending infections such as bacteria, fungi, viruses and parasites, acting as the first line of defense against pathogens. Especially in the early stage of infection, activated γδT cells play an important role. This article reviews the subsets, development and distribution of γδT cells, their unique roles in infection and their activation mechanisms.

表1 γδT细胞亚群的分类及分布特性
图1 γδT细胞的发育过程
表2 γδT细胞的抗感染功能以及相关机制
1
Brenner MB, McLean J, Dialynas DP, et al. Identification of a putative second t-cell receptor[J]. Nature, 1986, 322(6075):145-149.
2
Bonneville M, O'Brien RL, Born WK. Gammadelta t cell effector functions: a blend of innate programming and acquired plasticity[J]. Nat Rev Immunol, 2010, 10(7):467-478.
3
胡渊,李燕,关妘, 等. 小鼠γδT细胞亚群在不同组织器官的分布特性及在感染后的变化[J]. 中国免疫学杂志, 2016, 32(8):1107-1111+1117.
4
Inoue SI, Niikura M, Asahi H, et al. Preferentially expanding vγ1+γδt cells are associated with protective immunity against plasmodium infection in mice[J]. Eur J Immunol, 2017, 47(4):685-691.
5
Song Y, Li Y, Xiao Y, et al. Neutralization of interleukin-17a alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model[J]. Burns Trauma, 2019, 7:37.
6
Di Marco Barros R, Roberts NA, Dart RJ, et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδt cell compartments[J]. Cell, 2016, 167(1):203-218.e17.
7
Macleod AS, Havran WL. Functions of skin-resident γδt cells[J]. Cell Mol Life Sci, 2011, 68(14):2399-2408.
8
Dunne PJ, Maher CO, Freeley M, et al. CD3ε expression defines functionally distinct subsets of vδ1 t cells in patients with human immunodeficiency virus infection[J]. Front Immunol, 2018, 9:940.
9
Yang Y, Li L, Yuan L, et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated vγ9vδ2t cell activation[J]. Immunity, 2019, 50(4):1043-1053.
10
Cimini E, Sacchi A, De Minicis S, et al. Vδ2 t-cells kill zikv-infected cells by nkg2d-mediated cytotoxicity[J]. Microorganisms, 2019, 7(9):350.
11
Petrasca A, Melo AM, Breen EP, et al. Human vδ3+γδ t cells induce maturation and igm secretion by B cells[J]. Immunol Lett, 2018, 196:126-134.
12
Buus TB, Schmidt JD, Bonefeld CM, et al. Development of interleukin-17-producing vγ2+ γδt cells is reduced by icos signaling in the thymus[J]. Oncotarget, 2016, 7(15):19341-19354.
13
Tan L, Sandrock I, Odak I, et al. Single-cell transcriptomics identifies the adaptation of scart1+ vγ6+t cells to skin residency as activated effector cells[J]. Cell Rep, 2019, 27(12):3657-3671.e4.
14
Muro R, Takayanagi H, Nitta T. T cell receptor signaling for γδt cell development[J]. Inflamm Regen, 2019, 39:6.
15
Havran WL, Allison JP. Developmentally ordered appearance of thymocytes expressing different t-cell antigen receptors[J]. Nature, 1988, 335(6189):443-445.
16
Ciofani M, Knowles GC, Wiest DL, et al. Stage-specific and differential notch dependency at the alphabeta and gammadelta t lineage bifurcation[J]. Immunity, 2006, 25(1):105-116.
17
David A, Ferrick, Pamela S, et al. 胸腺内T细胞的发育和对αβ及γδT细胞的选择作用[J]. 中国免疫学杂, 1990(3):190-193.
18
Shibata K, Yamada H, Nakamura M, et al. Ifn-γ-producing and il-17-producing γδt cells differentiate at distinct developmental stages in murine fetal thymus[J]. J Immunol, 2014, 192(5):2210-2218.
19
Patil RS, Bhat SA, Dar AA, et al. The jekyll and hyde story of il-17-producing γδt cells[J]. Front Immunol, 2015, 6:37.
20
Nakamura K, White AJ, Parnell SM, et al. Differential requirement for ccr4 in the maintenance but not establishment of the invariant vγ5+ dendritic epidermal t-cell pool[J]. PLoS One, 2013, 8(9):e74019.
21
Kisielow J, Kopf M. The origin and fate of γδt cell subsets[J]. Curr Opin Immunol, 2013, 25(2):181-188.
22
Nonaka S, Naito T, Chen H, et al. Intestinal gammadelta t cells develop in mice lacking thymus, all lymph nodes, peyer's patches, and isolated lymphoid follicles[J]. J Immunol, 2005, 174(4):1906-1912.
23
Goodall KJ, Nguyen A, Matsumoto A, et al. Multiple receptors converge on h2-q10 to regulate nk and γδt-cell development[J]. Immunol Cell Biol, 2019, 97(3):326-339.
24
Silva-Santos B, Mensurado S, Coffelt SB. Γδt cells: Pleiotropic immune effectors with therapeutic potential in cancer[J]. Nat Rev Cancer, 2019, 19(7):392-404.
25
Shiromizu CM,Jancic CC. γδ T Lymphocytes: An effector cell in autoimmunity and infection[J]. Front Immunol, 2018, 9:2389.
26
Cavalcanti-Neto MP, Prado RQ, Piñeros AR, et al. Improvement of the resistance against early mycobacterium tuberculosis-infection in the absence of pi3kγ enzyme is associated with increase of cd4+il-17+ cells and neutrophils[J]. Tuberculosis, 2018, 113:1-9.
27
Xu S, Han Y, Xu X, et al. Il-17a-producing gammadeltat cells promote ctl responses against listeria monocytogenes infection by enhancing dendritic cell cross-presentation[J]. J Immunol, 2010, 185(10):5879-5887.
28
Romagnoli PA, Sheridan BS, Pham QM, et al. Il-17a-producing resident memory γδt cells orchestrate the innate immune response to secondary oral listeria monocytogenes infection[J]. Proc Natl Acad Sci U S A, 2016, 113(30):8502-8507.
29
Schmolka N, Papotto PH, Romero PV, et al. Microrna-146a controls functional plasticity in γδ t cells by targeting NOD1[J]. Sci Immunol, 2018, 3(23):eaao1392.
30
Arachchi PS, Fernando N, Weerasekera MM, et al. Proinflammatory cytokine il-17 shows a significant association withhelicobacter pyloriinfection and disease severity[J]. Gastroenterol Res Pract, 2017, 2017:6265150.
31
梁聚友,孙丽妲,庞高举, 等. 产生IL-17的γδT细胞在沙眼衣原体呼吸道感染早期促进中性粒细胞的募集[J]. 中华微生物学和免疫学杂志, 2017, 37(1):1-5.
32
Zhang HJ, Xu B, Wang H, et al. Il-17 is a protection effector against the adherent-invasive escherichia coli in murine colitis[J]. Mol Immunol, 2018, 93:166-172.
33
Omar T, Ziltener P, Chamberlain E, et al. Mice lacking γδt cells exhibit impaired clearance of pseudomonas aeruginosa lung infection and excessive production of inflammatory cytokines[J]. Infect Immun, 2020, 88(6):e00171-20.
34
Mengesha BG, Conti HR. The role of il-17 in protection against mucosal candida infections[J]. J Fungi (Basel), 2017, 3(4):52.
35
Wozniak KL, Kolls JK, Wormley FL Jr. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased il-17a production by γδt cells[J]. BMC Immunol, 2012, 13:65.
36
Sato K, Yamamoto H, Nomura T, et al. Production of il-17a at innate immune phase leads to decreased th1 immune response and attenuated host defense against infection with cryptococcus deneoformans[J]. J Immunol, 2020, 205(3):686-698.
37
殷文伟,张琼方,邵建营, 等. Vδ2 γδT细胞亚群在慢性HCV感染中的特征[J]. 中国免疫学杂志, 2016, 32(9):1346-1349.
38
Chang KM, Traum D, Park JJ, et al. Distinct phenotype and function of circulating vδ1+ and vδ2+ γδt-cells in acute and chronic hepatitis b[J]. PLoS Pathog, 2019, 15(4):e1007715.
39
Xue C, Wen M, Bao L, et al. Vγ4+γδt cells aggravate severe h1n1 influenza virus infection-induced acute pulmonary immunopathological injuryviasecreting interleukin-17a[J]. Front Immunol, 2017, 8:1054.
40
Kaminski H, Ménard C, El Hayani B, et al. Characterization of a unique γδT cell subset as a specific marker of CMV infection severity[J]. J Infect Dis, 2021, 223(4):655-666.
41
徐蕾,胡海燕,王丹丹, 等. Th2型γδT细胞参与急性RSV感染所诱发的气道炎症反应[J]. 微生物学杂志, 2016, 36(5):32-37.
42
吴江,王蕊,画伟, 等. 急性HIV感染者γδ T细胞及其细胞亚群的表型分析[J]. 中国免疫学杂志, 2018, 34(6):887-891.
43
Sheel M, Beattie L, Frame TC, et al. Il-17a-producing γδt cells suppress early control of parasite growth by monocytes in the liver[J]. J Immunol, 2015, 195(12):5707-5717.
44
Deroost K, Langhorne J. Gamma/delta t cells and their role in protection against malaria[J]. Front Immunol, 2018, 9:2973.
45
徐美丽,李超乾,姜晓红, 等. γδT细胞在铜绿假单胞菌肺炎患者外周血和痰液中的分布变化的探讨[J]. 广西医科大学学报, 2013, 30(6):877-880.
46
薛春雪,温铭杰,刘萌, 等. γδT17/Th17/Tc17细胞在H1N1重症感染小鼠肺脏中的分布及其与肺脏免疫损伤的关系[J]. 中国免疫学杂志, 2017, 33(4):563-568.
47
Kim SM, Park M, Yee SM, et al. Axl is a key regulator of intestinal γδT-cell homeostasis[J]. FASEB J, 2019, 33(12):13386-13397.
48
Sumida H, Lu E, Chen H, et al. Gpr55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage[J]. Sci Immunol, 2017, 2(18):eaao1135.
49
Born WK, Kemal Aydintug M, O'Brien RL. Diversity of γδ t-cell antigens[J]. Cell Mol Immunol, 2013, 10(1):13-20.
50
Girard P, Ponsard B, Charles J, et al. Potent bidirectional cross-talk between plasmacytoid dendritic cells and γδt cells through btn3a, type i/ii ifns and immune checkpoints[J]. Front Immunol, 2020, 11:861.
51
Dai YM, Liu HY, Liu YF, et al. Ebv transformation induces overexpression of hmsh2/3/6 on b lymphocytes and enhances γδt-cell-mediated cytotoxicity via tcr and nkg2d[J]. Immunology, 2018, 154(4):673-682.
52
Li Y, Wang X, Teng D, et al. Identification of the ligands of tcrγδ by screening the immune repertoire of γδt cells from patients with tuberculosis[J]. Front Immunol, 2019, 10:2282.
53
Fernandez MA, Yu U, Ferguson AL, et al. Murine skin-resident γδt cells impair the immune response to hsv in skin[J]. Infect Disord Drug Targets, 2020, 20(3):309-317.
54
Li F, Hao X, Chen Y, et al. The microbiota maintain homeostasis of liver-resident γδt-17 cells in a lipid antigen/cd1d-dependent manner[J]. Nat Commun, 2017, 7:13839.
55
Torres-Hernandez A, Wang W, Nikiforov Y, et al. γδt cells promote steatohepatitis by orchestrating innate and adaptive immune programming[J]. Hepatology, 2020, 71(2):477-494.
56
Guenot M, Loizon S, Howard J, et al. Phosphoantigen burst upon plasmodium falciparum schizont rupture can distantly activate vγ9vδ2 t cells[J]. Infect Immun, 2015, 83(10):3816-3824.
57
Lu H, Li DJ, Jin LP. γδt cells and related diseases[J]. Am J Reprod Immunol, 2016, 75(6):609-618.
[1] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[2] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[3] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 罗王宇, 赵乐, 杨柳, 张晓磊. 信号转导和转录激活因子3在牙发育中的机制研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 357-361.
[6] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[7] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[10] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[11] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?