切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (06) : 368 -372. doi: 10.3877/cma.j.issn.2095-1221.2020.06.009

所属专题: 文献

综述

间充质干细胞来源的外泌体在炎症性肠病治疗中的作用机制及应用前景
杨少鹏1   
  1. 1. 050035 石家庄,河北医科大学第二医院消化内科
  • 收稿日期:2020-04-23 出版日期:2020-12-01
  • 基金资助:
    国自然科学基金面上项目(82070563); 河北省自然科学基金面上项目(H2020206497)

Mechanism and application prospect of exosomes derived from mesenchymal stem cells in the treatment of inflammatory bowel disease

Shaopeng Yang1   

  1. 1. Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, China
  • Received:2020-04-23 Published:2020-12-01
  • About author:
    Corresponding author: Zhang Xiaolan, Email:
引用本文:

杨少鹏. 间充质干细胞来源的外泌体在炎症性肠病治疗中的作用机制及应用前景[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 368-372.

Shaopeng Yang. Mechanism and application prospect of exosomes derived from mesenchymal stem cells in the treatment of inflammatory bowel disease[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(06): 368-372.

炎症性肠病(IBD)是一种原因不明的非特异性肠道疾病,其发病率逐年提高,目前治疗药物疗效有限。间充质干细胞(MSCs)具有免疫调节、抗炎等功能,有望成为IBD的新兴治疗手段。然而MSCs因归巢能力有限,目前认为其可能通过旁分泌发挥治疗作用。MSCs分泌的外泌体(MSCs-Exo)具有MSCs的大部分功能,无恶性分化且在体内稳定存在,在干细胞治疗领域具有重要研究价值,但其在IBD中的作用机制尚不明确。本文将就MSCs-Exo对IBD的作用机制以及在IBD中的应用前景进行综述。

Inflammatory bowel disease (IBD) is a non-specific intestinal disease with unknown causes. Its incidence is increasing in recent years, and its medications' efficacy is limited at present. Mesenchymal stem cells (MSCs) have immunomodulatory and anti-inflammatory effects, which is expected to become an emerging treatment for IBD. However, many studies suggest that MSCs may treat diseases through paracrine manner due to their limited homing ability. Exosomes secreted by MSCs (MSCs-Exo) have most of the functions of MSCs and no potential for malignant differentiation, and exist stably in vivo, which make them high in research value in the field of stem cell therapy. Nevertheless, the mechanism of MSCs-Exo in the treatment of IBD is still unclear. The paper reviews the mechanism and application prospect of MSCs-Exo in the treatment of IBD.

1
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2018, 390(10114):2769-2778.
2
Biancone L, Annese V, Ardizzone S, et al. Safety of treatments for inflammatory bowel disease: clinical practice guidelines of the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD)[J]. Dig Liver Dis, 2017, 49(4):338-358.
3
Roda G, Jharap B, Neeraj N, et al. Loss of response to Anti-TNFs: definition, epidemiology, and management[J]. Clin Transl Gastroenterol, 2016, 7(1): e135.
4
Papamichael K, Lin S, Moore M, et al. Infliximab in inflammatory bowel disease[J]. Ther Adv Chronic Dis, 2019, 10:2040622319838443.
5
Papamichael K, Gils A, Rutgeerts P, et al. Role for therapeutic drug monitoring during induction therapy with TNF antagonists in IBD: evolution in the definition and management of primary nonresponse[J]. Inflamm Bowel Dis, 2015, 21(1):182-197.
6
Sala E, Genua M, Petti L, et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine[J]. Gastroenterology, 2015, 149(1): 163-176.
7
Song WJ, Li Q, Ryu MO, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice[J]. Stem Cell Res Ther, 2018, 9(1):91.
8
Abbaszadeh H, Ghorbani F, Derakhshani M, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm[J]. J Cell Physiol, 2020, 235(2):706-717.
9
Trams EG, Lauter CJ, Salem N Jr, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles[J]. Biochim Biophys Acta, 1981, 645(1):63-70.
10
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
11
Joo HS, Suh JH, Lee HJ, et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21(3): 727.
12
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med (Berl), 2013, 91(4): 431-437.
13
Van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4):213-228.
14
Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233:116733.
15
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514.
16
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867):1244-1247.
17
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: from roots to boost[J]. Stem Cells, 2019, 37(7):855-864.
18
Heidari M, Pouya S, Baghaei K, et al. The immunomodulatory effects of adipose-derived mesenchymal stem cells and mesenchymal stem cells-conditioned medium in chronic colitis[J]. J Cell Physiol, 2018, 233(11):8754-8766.
19
Yang J, Liu XX, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis[J]. PLoS One, 2015, 10(10):e0140551.
20
de Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(12):739-749.
21
Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization[J]. Int Immunopharmacol, 2019, 72: 264-274.
22
Mao F, Wu Y, Tang X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice[J]. Biomed Res Int, 2017, 2017:5356760.
23
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J]. JCI Insight, 2019, 4(24):e131273.
24
An JH, Li Q, Ryu MO, et al. TSG-6 in extracellular vesicles from canine mesenchymal stem/stromal is a major factor in relieving DSS-induced colitis[J]. PLoS One, 2020, 15(2):e0220756.
25
Iboshi Y, Nakamura K, Fukaura K, et al. Increased IL-17A/IL-17F expression ratio represents the key mucosal T helper/regulatory cell-related gene signature paralleling disease activity in ulcerative colitis[J]. J Gastroenterol, 2017, 52(3):315-326.
26
Chen Q, Duan X, Xu M, et al. BMSC-EVs regulate Th17 cell differentiation in UC via H3K27me3[J]. Mol Immunol, 2020, 118:191-200.
27
An JH, Li Q, Bhang DH, et al. TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis[J]. Sci Rep, 2020, 10(1):2115.
28
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods[J]. J Transl Med, 2014, 12:260.
29
Han YD, Bai Y, Yan XL, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting[J]. Biochem Biophys Res Commun, 2018, 497(1):305-312.
30
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6):6670-6688.
31
Holmberg FEO, Pedersen J, Jørgensen P, et al. Intestinal barrier integrity and inflammatory bowel disease: Stem cell-based approaches to regenerate the barrier[J]. J Tissue Eng Regen Med, 2018, 12(4):923-935.
32
Rager TM, Olson JK, Zhou Y, et al. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis[J]. J Pediatr Surg, 2016, 51(6):942-947.
33
McCulloh CJ, Olson JK, Wang Y, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes[J]. J Pediatr Surg, 2018, 53(6):1215-1220.
34
Wu H, Fan H, Shou Z, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1[J]. Int Immunopharmacol, 2019, 68:204-212.
35
Yang J, Zhou CZ, Zhu R, et al. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition[J]. J Gastroenterol Hepatol, 2017, 32(12): 1966-1974.
36
Wu Y, Qiu W, Xu X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination[J]. Am J Transl Res, 2018, 10(7):2026-2036.
37
Harrell CR, Fellabaum C, Jovicic N, et al. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome[J]. Cells, 2019, 8(5):467.
38
Ma ZJ, Wang YH, Li ZG, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis[J]. Int J Stem Cells, 2019, 12(3):440-448.
39
Matei AC, Antounians L, Zani A. Extracellular vesicles as a potential therapy for neonatal conditions: state of the art and challenges in clinical translation[J]. Pharmaceutics, 2019, 11(8):404.
40
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
41
Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends[J]. Biomed Res Int, 2018, 2018:8545347.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 易柏成, 李旭光, 王容容, 王新璇. 数字化3D打印导板应用于上前牙钙化根管治疗2例[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 385-390.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[5] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[6] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[7] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[8] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[9] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[10] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[11] 中国抗癌协会, 中国抗癌协会大肠癌专业委员会. 中国恶性肿瘤整合诊治指南-肛管癌(2024 版)[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 441-449.
[12] 吴天宇, 刘子璇, 杨浦鑫, 贾思明, 丁凯, 程晓东, 李泳龙, 陈伟, 吕红芝, 张奇. 腰椎间盘突出症保守治疗进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 379-384.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[15] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?