切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (06) : 368 -372. doi: 10.3877/cma.j.issn.2095-1221.2020.06.009

所属专题: 文献

综述

间充质干细胞来源的外泌体在炎症性肠病治疗中的作用机制及应用前景
杨少鹏1   
  1. 1. 050035 石家庄,河北医科大学第二医院消化内科
  • 收稿日期:2020-04-23 出版日期:2020-12-01
  • 基金资助:
    国自然科学基金面上项目(82070563); 河北省自然科学基金面上项目(H2020206497)

Mechanism and application prospect of exosomes derived from mesenchymal stem cells in the treatment of inflammatory bowel disease

Shaopeng Yang1   

  1. 1. Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, China
  • Received:2020-04-23 Published:2020-12-01
  • About author:
    Corresponding author: Zhang Xiaolan, Email:
引用本文:

杨少鹏. 间充质干细胞来源的外泌体在炎症性肠病治疗中的作用机制及应用前景[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 368-372.

Shaopeng Yang. Mechanism and application prospect of exosomes derived from mesenchymal stem cells in the treatment of inflammatory bowel disease[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(06): 368-372.

炎症性肠病(IBD)是一种原因不明的非特异性肠道疾病,其发病率逐年提高,目前治疗药物疗效有限。间充质干细胞(MSCs)具有免疫调节、抗炎等功能,有望成为IBD的新兴治疗手段。然而MSCs因归巢能力有限,目前认为其可能通过旁分泌发挥治疗作用。MSCs分泌的外泌体(MSCs-Exo)具有MSCs的大部分功能,无恶性分化且在体内稳定存在,在干细胞治疗领域具有重要研究价值,但其在IBD中的作用机制尚不明确。本文将就MSCs-Exo对IBD的作用机制以及在IBD中的应用前景进行综述。

Inflammatory bowel disease (IBD) is a non-specific intestinal disease with unknown causes. Its incidence is increasing in recent years, and its medications' efficacy is limited at present. Mesenchymal stem cells (MSCs) have immunomodulatory and anti-inflammatory effects, which is expected to become an emerging treatment for IBD. However, many studies suggest that MSCs may treat diseases through paracrine manner due to their limited homing ability. Exosomes secreted by MSCs (MSCs-Exo) have most of the functions of MSCs and no potential for malignant differentiation, and exist stably in vivo, which make them high in research value in the field of stem cell therapy. Nevertheless, the mechanism of MSCs-Exo in the treatment of IBD is still unclear. The paper reviews the mechanism and application prospect of MSCs-Exo in the treatment of IBD.

1
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2018, 390(10114):2769-2778.
2
Biancone L, Annese V, Ardizzone S, et al. Safety of treatments for inflammatory bowel disease: clinical practice guidelines of the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD)[J]. Dig Liver Dis, 2017, 49(4):338-358.
3
Roda G, Jharap B, Neeraj N, et al. Loss of response to Anti-TNFs: definition, epidemiology, and management[J]. Clin Transl Gastroenterol, 2016, 7(1): e135.
4
Papamichael K, Lin S, Moore M, et al. Infliximab in inflammatory bowel disease[J]. Ther Adv Chronic Dis, 2019, 10:2040622319838443.
5
Papamichael K, Gils A, Rutgeerts P, et al. Role for therapeutic drug monitoring during induction therapy with TNF antagonists in IBD: evolution in the definition and management of primary nonresponse[J]. Inflamm Bowel Dis, 2015, 21(1):182-197.
6
Sala E, Genua M, Petti L, et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine[J]. Gastroenterology, 2015, 149(1): 163-176.
7
Song WJ, Li Q, Ryu MO, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice[J]. Stem Cell Res Ther, 2018, 9(1):91.
8
Abbaszadeh H, Ghorbani F, Derakhshani M, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm[J]. J Cell Physiol, 2020, 235(2):706-717.
9
Trams EG, Lauter CJ, Salem N Jr, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles[J]. Biochim Biophys Acta, 1981, 645(1):63-70.
10
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
11
Joo HS, Suh JH, Lee HJ, et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21(3): 727.
12
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med (Berl), 2013, 91(4): 431-437.
13
Van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4):213-228.
14
Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233:116733.
15
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514.
16
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867):1244-1247.
17
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: from roots to boost[J]. Stem Cells, 2019, 37(7):855-864.
18
Heidari M, Pouya S, Baghaei K, et al. The immunomodulatory effects of adipose-derived mesenchymal stem cells and mesenchymal stem cells-conditioned medium in chronic colitis[J]. J Cell Physiol, 2018, 233(11):8754-8766.
19
Yang J, Liu XX, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis[J]. PLoS One, 2015, 10(10):e0140551.
20
de Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(12):739-749.
21
Cao L, Xu H, Wang G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization[J]. Int Immunopharmacol, 2019, 72: 264-274.
22
Mao F, Wu Y, Tang X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice[J]. Biomed Res Int, 2017, 2017:5356760.
23
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J]. JCI Insight, 2019, 4(24):e131273.
24
An JH, Li Q, Ryu MO, et al. TSG-6 in extracellular vesicles from canine mesenchymal stem/stromal is a major factor in relieving DSS-induced colitis[J]. PLoS One, 2020, 15(2):e0220756.
25
Iboshi Y, Nakamura K, Fukaura K, et al. Increased IL-17A/IL-17F expression ratio represents the key mucosal T helper/regulatory cell-related gene signature paralleling disease activity in ulcerative colitis[J]. J Gastroenterol, 2017, 52(3):315-326.
26
Chen Q, Duan X, Xu M, et al. BMSC-EVs regulate Th17 cell differentiation in UC via H3K27me3[J]. Mol Immunol, 2020, 118:191-200.
27
An JH, Li Q, Bhang DH, et al. TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis[J]. Sci Rep, 2020, 10(1):2115.
28
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods[J]. J Transl Med, 2014, 12:260.
29
Han YD, Bai Y, Yan XL, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting[J]. Biochem Biophys Res Commun, 2018, 497(1):305-312.
30
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6):6670-6688.
31
Holmberg FEO, Pedersen J, Jørgensen P, et al. Intestinal barrier integrity and inflammatory bowel disease: Stem cell-based approaches to regenerate the barrier[J]. J Tissue Eng Regen Med, 2018, 12(4):923-935.
32
Rager TM, Olson JK, Zhou Y, et al. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis[J]. J Pediatr Surg, 2016, 51(6):942-947.
33
McCulloh CJ, Olson JK, Wang Y, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes[J]. J Pediatr Surg, 2018, 53(6):1215-1220.
34
Wu H, Fan H, Shou Z, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1[J]. Int Immunopharmacol, 2019, 68:204-212.
35
Yang J, Zhou CZ, Zhu R, et al. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition[J]. J Gastroenterol Hepatol, 2017, 32(12): 1966-1974.
36
Wu Y, Qiu W, Xu X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination[J]. Am J Transl Res, 2018, 10(7):2026-2036.
37
Harrell CR, Fellabaum C, Jovicic N, et al. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome[J]. Cells, 2019, 8(5):467.
38
Ma ZJ, Wang YH, Li ZG, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis[J]. Int J Stem Cells, 2019, 12(3):440-448.
39
Matei AC, Antounians L, Zani A. Extracellular vesicles as a potential therapy for neonatal conditions: state of the art and challenges in clinical translation[J]. Pharmaceutics, 2019, 11(8):404.
40
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
41
Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends[J]. Biomed Res Int, 2018, 2018:8545347.
[1] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[2] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[3] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[4] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[5] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[6] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[7] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[10] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[11] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[12] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要