1 |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5):E359-E386.
|
2 |
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: Relevance to cervical cancer[J]. Expert Rev Proteomics, 2013, 10(5):461-472.
|
3 |
Guo L, Zhang C, Zhu J, et al. Proteomic identification of predictive tissue biomarkers of sensitive to neoadjuvant chemotherapy in squamous cervical cancer[J]. Life Sci, 2016, 151:102-108.
|
4 |
Guo X, Hao Y, Kamilijiang M, et al. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis[J]. Tumour Biol, 2015, 36(3):1711-1720.
|
5 |
Pedersen HN, Smith LW, Racey CS, et al. Implementation considerations using HPV self-collection to reach women under-screened for cervical cancer in high-income settings[J]. Curr Oncol, 2018, 25(1):e4-e7.
|
6 |
Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, et al. Understanding the HPV integration and its progression to cervical cancer[J]. Infect Genet Evol, 2018, 61:134-144.
|
7 |
Chatterjee K, Alsharif D, Mazza C, et al. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein e6 in cervical cancer cells[J]. Nutrients, 2018, 10(2). pii: E243.
|
8 |
Hall MT, Simms KT, Lew JB, et al. Projected future impact of HPV vaccination and primary HPV screening on cervical cancer rates from 2017-2035: Example from Australia[J]. PLoS One, 2018, 13(2): e185332.
|
9 |
Tan SC, Ismail MP, Duski DR, et al. Prevalence and type distribution of human papillomavirus (HPV) in Malaysian women with and without cervical cancer: An updated estimate[J]. Biosci Rep, 2018, 38(2). pii: BSR20171268.
|
10 |
Tranberg M, Bech BH, Blaakaer J, et al. Preventing cervical cancer using HPV self-sampling: Direct mailing of test-kits increases screening participation more than timely opt-in procedures-a randomized controlled trial[J]. BMC Cancer, 2018, 18(1):273.
|
11 |
Vahabi M, Lofters A. HPV self-sampling: A promising approach to reduce cervical cancer screening disparities in Canada[J]. Curr Oncol, 2018, 25(1):13-18.
|
12 |
Kontostathi G, Zoidakis J, Anagnou NP, et al. Proteomics approaches in cervical cancer: Focus on the discovery of biomarkers for diagnosis and drug treatment monitoring[J]. Expert Rev Proteomics, 2016, 13(8):731-745.
|
13 |
Gustinucci D, Giorgi RP, Cesarini E, et al. Use of cytology, E6/E7 mRNA, and p16INK4a-Ki-67 to define the management of human papillomavirus (HPV)-Positive women in cervical cancer screening[J]. Am J Clin Pathol, 2016, 145(1):35-45.
|
14 |
El Hamdani W, Amrani M, Attaleb M, et al. EGFR, p16INK4a and E-cadherin immuno-histochemistry and EGFR point mutations analyses in invasive cervical cancer specimens from Moroccan women[J]. Cell Mol Biol (Noisy-le-grand), 2010, 56 Suppl:OL1373-OL1384.
|
15 |
Han YD, Wang XB, Cui NH, Zhang S, et al. Associations of P16INK4a promoter hypermethylation with squamous intra-epithelial lesion, cervical cancer and their clinicopathological features: A meta-analysis[J]. Oncotarget, 2017, 8(1):1871-1883.
|
16 |
Gao G, Johnson SH, Kasperbauer JL, et al. Mate pair sequencing of oropharyngeal squamous cell carcinomas reveals that HPV integration occurs much less frequently than in cervical cancer[J]. J Clin Virol, 2014, 59(3):195-200.
|
17 |
Pedroza-Torres A, Lopez-Urrutia E, Garcia-Castillo V, et al. MicroRNAs in cervical cancer: Evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance[J]. Molecules, 2014, 19(5):6263-6281.
|
18 |
Gao P, Zheng J. High-risk HPV E5-induced cell fusion: A critical initiating event in the early stage of HPV-associated cervical cancer[J]. Virol J, 2010, 7:238.
|
19 |
Ge Y, Mody DR, Smith D, et al. P16(INK4a) and ProEx C immunostains facilitate differential diagnosis of hyperchromatic crowded groups in liquid-based Papanicolaou tests with menstrual contamination[J]. Acta Cytol, 2012, 56(1):55-61.
|
20 |
Bala R, Pinsky BA, Beck AH, et al. P16 is superior to ProEx C in identifying high-grade squamous intraepithelial lesions (HSIL) of the anal canal[J]. Am J Surg Pathol, 2013, 37(5):659-668.
|
21 |
Chang S, Smith E, Levin M, et al. Comparative study of ProEx C immunocytochemistry and UroVysion fluorescent in-situ hybridization assays on urine cytology specimens[J]. Cytojournal, 2015, 12:2.
|
22 |
Alaghehbandan R, Fontaine D, Bentley J, et al. Performance of ProEx C and PreTect HPV-Proofer E6/E7 mRNA tests in comparison with the hybrid capture 2 HPV DNA test for triaging ASCUS and LSIL cytology[J]. Diagn Cytopathol, 2013, 41(9):767-775.
|
23 |
Botti G, Malzone MG, La Mantia E, et al. ProEx c as diagnostic marker for detection of urothelial carcinoma in urinary samples: A review[J]. Int J Med Sci, 2017, 14(6):554-559.
|
24 |
Lin LH, Chang SJ, Hu RY, et al. Biomarker discovery for neuroendocrine cervical cancer[J]. Electrophoresis, 2014, 35(14):2039-2045.
|
25 |
Mohammed SI, Ren W, Flowers L, et al. Point-of-care test for cervical cancer in LMICs[J]. Oncotarget, 2016, 7(14):18787-18797.
|
26 |
Chang JW, Jeon HB, Lee JH, et al. Augmented expression of peroxiredoxin I in lung cancer[J]. Biochem Biophys Res Commun, 2001, 289(2):507-512.
|
27 |
Sun ZJ, Zhu L, Lang JH, et al. Proteomic analysis of the uterosacral ligament in postmenopausal women with and without pelvic organ prolapse[J]. Chin Med J (Engl), 2015, 128(23):3191-3196.
|
28 |
Kultima K, Nystrom AM, Scholz B, et al. Valproic acid teratogenicity: A toxicogenomics approach. Environ Health Perspect[J], 2004, 112(12):1225-1235.
|
29 |
Xu SG, Yan PJ, Shao ZM. Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis[J]. J Cancer Res Clin Oncol, 2010, 136(10):1545-1556.
|
30 |
Chae JI, Kim J, Lee SG, et al. Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy[J]. Proteome Sci, 2011, 9:41.
|
31 |
Zhao Q, He Y, Wang XL, et al. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma[J]. Clin Transl Oncol, 2015, 17(8):620-631.
|
32 |
Decanini A, Nordgaard CL, Feng X, et al. Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration[J]. Am J Ophthalmol, 2007, 143(4):607-615.
|
33 |
Seibold P, Hall P, Schoof N, et al. Polymorphisms in oxidative stress-related genes and mortality in breast cancer patients--potential differential effects by radiotherapy?[J]. Breast, 2013, 22(5):817-823.
|
34 |
Lee YJ, Cho HN, Jeoung DI, et al. HSP25 overexpression attenuates oxidative stress-induced apoptosis:Roles of ERK1/2 signaling and manganese superoxide dismutase[J]. Free Radic Biol Med, 2004, 36(4):429-444.
|
35 |
Morton JP, Maclaren DP, Cable NT, et al. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise[J]. J Appl Physiol (1985), 2006, 101(1):176-182.
|
36 |
Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics[J]. Br J Cancer, 2014, 110(7):1748-1758.
|
37 |
Wang S, Yang S, Vlantis AC, et al. Expression of antioxidant molecules and heat shock protein 27 in thyroid tumors[J]. J Cell Biochem, 2016, 117(11):2473-2481.
|
38 |
Wang RC, Huang CY, Pan TL, et al. Proteomic Characterization of Annexin l (ANX1) and Heat Shock Protein 27 (HSP27) as Biomarkers for Invasive Hepatocellular Carcinoma Cells[J]. PLoS One, 2015, 10(10):e139232.
|
39 |
Lomnytska MI, Becker S, Bodin I, et al. Differential expression of ANXA6, HSP27, PRDX2, NCF2, and TPM4 during uterine cervix carcinogenesis: Diagnostic and prognostic value[J]. Br J Cancer, 2011, 104(1):110-119.
|
40 |
Hwang YJ, Lee SP, Kim SY, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer[J]. Yonsei Med J, 2009, 50(3):399-406.
|
41 |
Smedts F, Ramaekers F, Troyanovsky S, et al. Keratin expression in cervical cancer[J]. Am J Pathol, 1992, 141(2):497-511.
|
42 |
Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics[J]. Br J Cancer, 2014, 110(7):1748-1758.
|
43 |
Yu LR, Lv JQ, Jin LY, et al. Over-expression of protein kinase Cisoforms (alpha, delta, theta and zeta) in squamous cervical cancer[J]. Neoplasma, 2011, 58(6):491-498.
|
44 |
Narisawa-Saito M, Handa K, Yugawa T, et al. HPV16 E6-mediated stabilization of ErbB2 in neoplastic transformation of human cervical keratinocytes[J]. Oncogene, 2007, 26(21):2988-2996.
|
45 |
Bae SM, Lee CH, Cho YL, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients[J]. Gynecol Oncol, 2005, 99(1):26-35.
|
46 |
Guo L, Zhang C, Zhu J, et al. Proteomic identification of predictive tissue biomarkers of sensitive to neoadjuvant chemotherapy in squamous cervical cancer[J]. Life Sci, 2016, 151:102-108.
|
47 |
Zhu X, Lv J, Yu L, et al. Proteomic identification of differentially-expressed proteins in squamous cervical cancer[J]. Gynecol Oncol, 2009, 112(1):248-256.
|
48 |
Bae SM, Min HJ, Ding GH, et al. Protein expression profile using two-dimensional gel analysis in squamous cervical cancer patients[J]. Cancer Res Treat, 2006, 38(2):99-107.
|
49 |
Bae SM, Lee CH, Cho YL, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients[J]. Gynecol Oncol, 2005, 99(1):26-35.
|
50 |
Looi ML, Karsani SA, Rahman MA, et al. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma[J]. Biosci, 2009, 34(6):917-925.
|
51 |
Lin YW, Lai HC, Lin CY, et al. Plasma proteomic profiling for detecting and differentiating in situ and invasive carcinomas of the uterine cervix[J]. Int J Gynecol Cancer, 2006, 16(3):1216-1224.
|
52 |
Liu C, Pan C, Shen J, et al. Discrimination analysis of mass spectrometry proteomics for cervical cancer detection[J]. Med Oncol, 2011, 28 Suppl 1:S553-S559.
|
53 |
Lokamani I, Looi ML, Md AS, et al. Gelsolin and ceruloplasmin as potential predictive biomarkers for cervical cancer by 2D-DIGE proteomics analysis[J]. Pathol Oncol Res, 2014, 20(1):119-129.
|
54 |
Patil A, Bhat S, Pai KM, et al. Ultra-sensitive high performance liquid chromatography-laser-induced fluorescence based proteomics for clinical applications[J]. Proteomics, 2015, 127(Pt A):202-210.
|
55 |
Boichenko AP, Govorukhina N, Klip HG, et al. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer[J]. Proteome Res, 2014, 13(11):4995-5007.
|
56 |
Rader JS, Malone JP, Gross J, et al. A unified sample preparation protocol for proteomic and genomic profiling of cervical swabs to identify biomarkers for cervical cancer screening[J]. Proteomics Clin Appl, 2008, 2(12):1658-1669.
|
57 |
An HT, Yoo S, Ko J. Alpha-Actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of Snail expression and beta-catenin stabilization in cervical cancer[J]. Oncogene, 2016, 35(45):5893-5904.
|
58 |
Van Raemdonck GA, Tjalma WA, Coen EP, et al. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid[J]. PLoS One, 2014, 9(9):e106488.
|
59 |
Boylan KL, Afiuni-Zadeh S, Geller MA, et al. A feasibility study to identify proteins in the residual Pap test fluid of women with normal cytology by mass spectrometry-based proteomics[J]. Clin Proteomics, 2014, 11(1):30.
|
60 |
Panicker G, Ye Y, Wang D, et al. Characterization of the human cervical mucous proteome[J]. Clin Proteomics, 2010, 6(1-2):18-28.
|
61 |
Nishikawa K, Rosenblum MG, Newman RA, et al. Resistance of human cervical carcinoma cells to tumor necrosis factor correlates with their increased sensitivity to cisplatin: Evidence of a role for DNA repair and epidermal growth factor receptor[J]. Cancer Res, 1992, 52(17):4758-4765.
|
62 |
Yim EK, Lee KH, Kim CJ, et al. Analysis of differential protein expression by cisplatin treatment in cervical carcinoma cells[J]. Int J Gynecol Cancer, 2006, 16(2):690-697.
|
63 |
Yim EK, Lee SB, Lee KH, et al. Analysis of the in vitro synergistic effect of 5-fluorouracil and cisplatin on cervical carcinoma cells[J]. Int J Gynecol Cancer, 2006, 16(3):1321-1329.
|
64 |
Yim EK, Bae JS, Lee SB, et al. Proteome analysis of differential protein expression in cervical cancer cells after paclitaxel treatment[J]. Cancer Res Treat, 2004, 36(6):395-399.
|
65 |
Lee KH, Yim EK, Kim CJ, et al. Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells[J]. Gynecol Oncol, 2005, 98(1):45-53.
|
66 |
Masters JR. HeLa cells 50 years on: The good, the bad and the ugly[J]. Nat Rev Cancer, 2002, 2(4):315-319.
|
67 |
Pimenta JM, Galindo C, Jenkins D, et al. Estimate of the global burden of cervical adenocarcinoma and potential impact of prophylactic human papillomavirus vaccination[J]. BMC Cancer, 2013, 13:553.
|
68 |
Harima Y, Ikeda K, Utsunomiya K, et al. Apolipoprotein C-Ⅱ is a potential serum biomarker as a prognostic factor of locally advanced cervical cancer after chemoradiation therapy[J]. Int J Radiat Oncol Biol Phys, 2013, 87(5):1155-1161.
|
69 |
Chai Y, Wang J, Gao Y, et al. Identification of biomarkers for radiation-induced acute intestinal symptoms (RIAISs) in cervical cancer patients by serum protein profiling[J]. J Radiat Res, 2015, 56(1):134-140.
|
70 |
Mordhorst LB, Sorbe B, Ahlin C. A study of serum biomarkers associated with relapse of cervical cancer[J]. Anticancer Res, 2012, 32(11):4913-4922.
|
71 |
Van Gorp T, Cadron I, Daemen A, et al. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS[J]. Proteome Sci, 2012, 10(1):41.
|
72 |
Song DG, Kim YS, Jung BC, et al. Parkin induces upregulation of 40S ribosomal protein SA and posttranslational modification of cytokeratins 8 and 18 in human cervical cancer cells[J]. Appl Biochem Biotechnol, 2013, 171(7):1630-1638.
|
73 |
Boichenko AP, Govorukhina N, Klip HG, et al. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer[J]. J Proteome Res, 2014, 13(11):4995-5007.
|
74 |
Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics[J]. Br J Cancer, 2014, 110(7):1748-1758.
|
75 |
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: Relevance to cervical cancer[J]. Expert Rev Proteomics, 2013, 10(5):461-472.
|
76 |
Lokamani I, Looi ML, Md AS, et al. Gelsolin and ceruloplasmin as potential predictive biomarkers for cervical cancer by 2D-DIGE proteomics analysis[J]. Pathol Oncol Res, 2014, 20(1):119-129.
|
77 |
Richard SA, Jiang Y, Xiang LH, et al. Post-translational modifications of high mobility group box 1 and cancer[J]. Am J Transl Res, 2017, 9(12):5181-5196.
|
78 |
Corujo D, Buschbeck M. Post-Translational modifications of H2A histone variants and their role in cancer[J]. Cancers (Basel), 2018, 10(3). pii: E59.
|
79 |
Prakasam G, Iqbal MA, Bamezai R, Mazurek S. Posttranslational modifications of pyruvate kinase m2: Tweaks that benefit cancer[J]. Front Oncol, 2018, 8:22.
|
80 |
Li G, Wang D, Ma W, et al. Transcriptomic and epigenetic analysis of breast cancer stem cells[J]. Epigenomics, 2018, 10(6):765-783.
|
81 |
Mohan R, Held KD, Story MD, et al. Proceedings of the national cancer institute workshop on charged particle radiobiology[J]. Int J Radiat Oncol Biol Phys, 2018, 100(4):816-831.
|
82 |
Chen JT, Liu CC, Yu JS, et al. Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells[J]. J Proteomics, 2018, 188:139-151.
|
83 |
Liu YL, Wang GQ, Cui HX, et al. MiRNA211 induces apoptosis of cervical cancer SiHa cells via down-regulation of inhibitor of apoptosis proteins[J]. Eur Rev Med Pharmacol Sci, 2018, 22(2):336-342.
|
84 |
Laengsri V, Kerdpin U, Plabplueng C, et al. Cervical cancer markers: Epigenetics and microRNAs[J]. Lab Med, 2018.
|
85 |
Jiang L, Shi S, Shi Q, et al. MicroRNA-519d-3p inhibits proliferation and promotes apoptosis by targeting HIF-2alpha in cervical cancer under hypoxic conditions[J]. Oncol Res, 2018, 26(7):1055-1062.
|
86 |
Poudyal D, Herman A, Adelsberger JW, et al. A novel microRNA, hsa-miR-6852 differentially regulated by Interleukin-27 induces necrosis in cervical cancer cells by downregulating the FoxM1 expression[J]. Sci Rep, 2018, 8(1):900.
|
87 |
Li C, Zheng X, Li W, et al. Serum miR-486-5p as a diagnostic marker in cervical cancer: With investigation of potential mechanisms[J]. BMC Cancer, 2018, 18(1):61.
|
88 |
Wei H, Zhang JJ, Tang QL. MiR-638 inhibits cervical cancer metastasis through Wnt/beta-catenin signaling pathway and correlates with prognosis of cervical cancer patients[J]. Eur Rev Med Pharmacol Sci, 2017, 21(24):5587-5593.
|
89 |
Hua FF, Liu SS, Zhu LH, et al. MiRNA-338-3p regulates cervical cancer cells proliferation by targeting MACC1 through MAPK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5342-5352.
|
90 |
Chuanyin L, Xiaona W, Zhiling Y, et al. The association between polymorphisms in microRNA genes and cervical cancer in a Chinese Han population[J]. Oncotarget, 2017, 8(50):87914-87927.
|
91 |
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis[J]. Oncotarget, 2017, 8(49):86625-86633.
|
92 |
Liang C, Ding J, Yang Y, et al. MicroRNA-433 inhibits cervical cancer progression by directly targeting metadherin to regulate the AKT and beta-catenin signalling pathways[J]. Oncol Rep, 2017, 38(6):3639-3649.
|
93 |
Liu GF, Zhang SH, Li XF, et al. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1[J]. Oncotarget, 2017, 8(46):80757-80769.
|
94 |
Wang H, Zhao Y, Chen M, Cui J. Identification of novel long non-coding and circular RNAs in human Papillomavirus-Mediated cervical cancer[J]. Front Microbiol, 2017, 8:1720.
|
95 |
Varghese VK, Shukla V, Kabekkodu SP, et al. DNA methylation regulated microRNAs in human cervical cancer[J]. Mol Carcinog, 2018, 57(3):370-382.
|
96 |
Meng X, Zhao Y, Wang J, et al. Regulatory roles of miRNA-758 and matrix extracellular phosphoglycoprotein in cervical cancer[J]. Exp Ther Med, 2017, 14(4):2789-2794.
|
97 |
Lin M, Xue XY, Liang SZ, et al. MiR-187 overexpression inhibits cervical cancer progression by targeting HPV16 E6[J]. Oncotarget, 2017, 8(38):62914-62926.
|
98 |
Ou L, Wang D, Zhang H, et al. Decreased expression of MiR-138-5p by LncRNA h19 in cervical cancer promotes tumor proliferation[J]. Oncol Res, 2018, 26(3):401-410.
|
99 |
Fang J, Li Y, Zhang J, et al. Correlation between polymorphisms in microRNA-regulated genes and cervical cancer susceptibility in a Xinjiang Uygur population[J]. Oncotarget, 2017, 8(19):31758-31764.
|
100 |
Liang B, Li Y, Wang T. A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis[J]. Sci Rep, 2017, 7(1):5624.
|
101 |
Zeng Y, Wang KX, Xu H, Hong Y. Integrative miRNA analysis identifies hsa-miR-3154, hsa-miR-7-3, and hsa-miR-600 as potential prognostic biomarker for cervical cancer[J]. J Cell Biochem, 2018, 119(2):1558-1566.
|
102 |
Xu Z, Zhou Y, Shi F, et al. Investigation of differentially-expressed microRNAs and genes in cervical cancer using an integrated bioinformatics analysis[J]. Oncol Lett, 2017, 13(4):2784-2790.
|
103 |
Gao YL, Zhao ZS, Zhang MY, et al. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR- 424[J]. Oncol Res, 2017, 25(8):1391-1398.
|
104 |
Granados-López AJ, Ruiz-Carrillo JL, Servín-González LS, et al. Use of mature miRNA strand selection in miRNAs families in cervical cancer development[J]. Int J Mol Sci, 2017, 18(2). pii: E407.
|
105 |
Xu L, Xu Q, Li X, Zhang X. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor- alpha[J]. Mol Med Rep, 2017, 16(4):4659-4663.
|
106 |
Phuah NH, Azmi MN, Awang K, et al. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1'S-1'-acetoxychavicol acetate via regulating RSU1[J]. Onco Targets Ther, 2017, 10:1695-1705.
|
107 |
Guo M, Zhao X, Yuan X, et al. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer[J]. Oncotarget, 2017, 8(17):28226-28236.
|
108 |
Li J, Liu Q, Clark LH, et al. Deregulated miRNAs in human cervical cancer: Functional importance and potential clinical use[J]. Future Oncol, 2017, 13(8):743-753.
|
109 |
Sikander M, Hafeez BB, Malik S, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer[J]. Sci Rep, 2016, 6:36594.
|
110 |
Kong Q, Tang Z, Xiang F, et al. Diagnostic value of serum hsa-mir-92a in patients with cervical cancer[J]. Clin Lab, 2017, 63(2):335-340.
|
111 |
Yeung CL, Tsang TY, Yau PL, et al. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3[J]. Oncotarget, 2017, 8(7):12158-12173.
|
112 |
Huang P, Xi J, Liu S. MiR-139-3p induces cell apoptosis and inhibits metastasis of cervical cancer by targeting NOB1[J]. Biomed Pharmacother, 2016, 83:850-856.
|
113 |
Lai XJ, Cheng XY, Hu LD. MicroRNA 421 induces apoptosis of c-33a cervical cancer cells via down-regulation of Bcl-xL[J]. Genet Mol Res, 2016, 15(4).
|
114 |
Yang CX, Zhang SM, Li J, et al. MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting beta-catenin[J]. Oncol Lett, 2016, 12(6):4983-4990.
|
115 |
Xu D, Liu S, Zhang L, et al. MiR-211 inhibits invasion and epithelial-to-mesenchymal transition (EMT) of cervical cancer cells via targeting MUC4[J]. Biochem Biophys Res Commun, 2017, 485(2):556-562.
|
116 |
Song L, Liu S, Zhang L, et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway[J]. Tumour Biol, 2016, 37(9):12161-12168.
|
117 |
Xia YF, Pei GH, Wang N, et al. MiR-3156-3p is downregulated in HPV-positive cervical cancer and performs as a tumor-suppressive miRNA[J]. Virol J, 2017, 14(1):20.
|
118 |
Sharma SS, Roy CR, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol (Dordr), 2016, 39(6):559-572.
|
119 |
Yin XZ, Zhao DM, Zhang GX, et al. Effect of miRNA-203 on cervical cancer cells and its underlying mechanism[J]. Genet Mol Res, 2016, 15(3).
|
120 |
Jin T, Wu X, Yang H, et al. Association of the miR-17-5p variants with susceptibility to cervical cancer in a Chinese population[J]. Oncotarget, 2016, 7(47):76647-76655.
|
121 |
Liu Q, Guo X, Que S, et al. LncRNA RSU1P2 contributes to tumorigenesis by acting as a ceRNA against let-7a in cervical cancer cells[J]. Oncotarget, 2017, 8(27):43768-43781.
|
122 |
Fang W, Shu S, Yongmei L, et al. MiR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200[J]. Sci Rep, 2016, 6:33229.
|
123 |
Zhao S, Yao DS, Chen JY, Ding N. Aberrant expression of miR-20a and miR-203 in cervical cancer[J]. Asian Pac J Cancer Prev, 2013, 14(4):2289-2293.
|
124 |
Zhao S, Yao D, Chen J, et al. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer[J]. Genet Test Mol Biomarkers, 2013, 17(8):631-636.
|
125 |
Li MY, Hu XX. Meta-analysis of microRNA expression profiling studies in human cervical cancer[J]. Med Oncol, 2015, 32(6):510.
|
126 |
Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma[J]. Int J Mol Med, 2013, 32(3):557-567.
|
127 |
Wang X, Li Q, Jin H, et al. MiR-424 acts as a tumor radiosensitizer by targeting aprataxin in cervical cancer[J]. Oncotarget, 2016, 7(47):77508-77515.
|
128 |
Gao D, Zhang Y, Zhu M, et al. MiRNA expression profiles of HPV-Infected patients with cervical cancer in the uyghur population in china[J]. PLoS One, 2016, 11(10):e164701.
|
129 |
Liu S, Song L, Yao H, et al. MiR-375 is epigenetically downregulated by HPV-16 e6 mediated DNMT1 upregulation and modulates EMT of cervical cancer cells by suppressing lncRNA MALAT1[J]. PLoS One, 2016, 11(9):e163460.
|
130 |
Wang S, Cao X, Ding B, et al. The rs767649 polymorphism in the promoter of miR-155 contributes to the decreased risk for cervical cancer in a Chinese population[J]. Gene, 2016, 595(1):109-114.
|
131 |
Yang J, Zhang Z, Guo W, et al. Single nucleotide polymorphisms in microRNA genes are associated with cervical cancer susceptibility in a population from Xinjiang Uygur[J]. Oncotarget, 2016, 7(44):71447-71454.
|
132 |
Zhang R, Su J, Xue SL, et al. HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer[J]. Am J Cancer Res, 2016, 6(2):312-320.
|
133 |
Hang D, Zhou W, Jia M, et al. Genetic variants within microRNA-binding site of RAD51B are associated with risk of cervical cancer in Chinese women[J]. Cancer Med, 2016, 5(9):2596-2601.
|
134 |
Pedroza-Torres A, Fernandez-Retana J, Peralta-Zaragoza O, et al. A microRNA expression signature for clinical response in locally advanced cervical cancer[J]. Gynecol Oncol, 2016, 142(3):557-565.
|
135 |
Wang X, Xia Y. MicroRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2[J]. Biochem Biophys Res Commun, 2016, 475(2):169-175.
|
136 |
Zhang J, Wang F, Xu J, et al. Micro ribonucleic acid-93 promotes oncogenesis of cervical cancer by targeting RAB11 family interacting protein 1[J]. Obstet Gynaecol Res, 2016, 42(9):1168-1179.
|
137 |
Xu J, Wan X, Chen X, et al. MiR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6[J]. Sci Rep, 2016, 6:28968.
|