切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 375 -384. doi: 10.3877/cma.j.issn.2095-1221.2019.06.010

所属专题: 文献

综述

子宫颈癌细胞学新型生物标志、诊断标志物的筛选和开发现状
李红芳1,(), 赵小环1, 王丽萍1, 许晓燕1, 孙高高1   
  1. 1. 730050 兰州,甘肃省兰州市第一人民医院妇产科
  • 收稿日期:2019-07-22 出版日期:2019-12-01
  • 通信作者: 李红芳
  • 基金资助:
    甘肃省科技厅重点研发计划-社会发展类课题(17YF1FA141)

Screening and development of new biomarkers and diagnostic biomarkers for cervical cancer

Hongfang Li1,(), Xiaohuan Zhao1, Liping Wang1, Xiaoyan Xu1, Gaogao Sun1   

  1. 1. Department of Obstetrics & Gynecology, the First People's Hospital of Lanzhou City, Lanzhou 730050, China
  • Received:2019-07-22 Published:2019-12-01
  • Corresponding author: Hongfang Li
  • About author:
    Corresponding author:Li Hongfang , Email:
引用本文:

李红芳, 赵小环, 王丽萍, 许晓燕, 孙高高. 子宫颈癌细胞学新型生物标志、诊断标志物的筛选和开发现状[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(06): 375-384.

Hongfang Li, Xiaohuan Zhao, Liping Wang, Xiaoyan Xu, Gaogao Sun. Screening and development of new biomarkers and diagnostic biomarkers for cervical cancer[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(06): 375-384.

子宫颈癌至今仍是全球范围内一个重要的公共卫生问题,是妇女疾病死亡的主要原因之一。因此,子宫颈癌细胞学的筛查、早期诊断和治疗越来越受到重视,虽然新的技术不断推出使子宫颈癌的早期筛查及诊治水平有了很大提高,但仍缺乏新型的特异性生物学标志物。本文从新的子宫颈癌相关蛋白生物标志物和诊断靶标的发现,治疗子宫颈癌的药物作用、治疗靶标和作用机制的评估,子宫颈癌相关微小核糖核酸作为诊断和治疗靶标的筛选等方面对子宫颈脱落细胞筛查方法的开发和研究进展进行综述,为子宫颈癌的早期筛查和诊断寻找新的生物学标志物。

Cervical cancer is still an important public health problem in the world, which is one of the main causes of women's death. Therefore, more and more attention has been paid to cervical cancer cytology screening and early diagnosis and treatment. At present, with the continuous introduction of new technologies, the early screening and diagnosis of cervical cancer has been greatly improved, but there is still a lack of new specific biomarkers. In this paper, the development and research progress of screening methods for cervical exfoliated cells are reviewed, in order to find new biomarkers for early screening and diagnosis of cervical cancer.

1
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5):E359-E386.
2
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: Relevance to cervical cancer[J]. Expert Rev Proteomics, 2013, 10(5):461-472.
3
Guo L, Zhang C, Zhu J, et al. Proteomic identification of predictive tissue biomarkers of sensitive to neoadjuvant chemotherapy in squamous cervical cancer[J]. Life Sci, 2016, 151:102-108.
4
Guo X, Hao Y, Kamilijiang M, et al. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis[J]. Tumour Biol, 2015, 36(3):1711-1720.
5
Pedersen HN, Smith LW, Racey CS, et al. Implementation considerations using HPV self-collection to reach women under-screened for cervical cancer in high-income settings[J]. Curr Oncol, 2018, 25(1):e4-e7.
6
Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, et al. Understanding the HPV integration and its progression to cervical cancer[J]. Infect Genet Evol, 2018, 61:134-144.
7
Chatterjee K, Alsharif D, Mazza C, et al. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein e6 in cervical cancer cells[J]. Nutrients, 2018, 10(2). pii: E243.
8
Hall MT, Simms KT, Lew JB, et al. Projected future impact of HPV vaccination and primary HPV screening on cervical cancer rates from 2017-2035: Example from Australia[J]. PLoS One, 2018, 13(2): e185332.
9
Tan SC, Ismail MP, Duski DR, et al. Prevalence and type distribution of human papillomavirus (HPV) in Malaysian women with and without cervical cancer: An updated estimate[J]. Biosci Rep, 2018, 38(2). pii: BSR20171268.
10
Tranberg M, Bech BH, Blaakaer J, et al. Preventing cervical cancer using HPV self-sampling: Direct mailing of test-kits increases screening participation more than timely opt-in procedures-a randomized controlled trial[J]. BMC Cancer, 2018, 18(1):273.
11
Vahabi M, Lofters A. HPV self-sampling: A promising approach to reduce cervical cancer screening disparities in Canada[J]. Curr Oncol, 2018, 25(1):13-18.
12
Kontostathi G, Zoidakis J, Anagnou NP, et al. Proteomics approaches in cervical cancer: Focus on the discovery of biomarkers for diagnosis and drug treatment monitoring[J]. Expert Rev Proteomics, 2016, 13(8):731-745.
13
Gustinucci D, Giorgi RP, Cesarini E, et al. Use of cytology, E6/E7 mRNA, and p16INK4a-Ki-67 to define the management of human papillomavirus (HPV)-Positive women in cervical cancer screening[J]. Am J Clin Pathol, 2016, 145(1):35-45.
14
El Hamdani W, Amrani M, Attaleb M, et al. EGFR, p16INK4a and E-cadherin immuno-histochemistry and EGFR point mutations analyses in invasive cervical cancer specimens from Moroccan women[J]. Cell Mol Biol (Noisy-le-grand), 2010, 56 Suppl:OL1373-OL1384.
15
Han YD, Wang XB, Cui NH, Zhang S, et al. Associations of P16INK4a promoter hypermethylation with squamous intra-epithelial lesion, cervical cancer and their clinicopathological features: A meta-analysis[J]. Oncotarget, 2017, 8(1):1871-1883.
16
Gao G, Johnson SH, Kasperbauer JL, et al. Mate pair sequencing of oropharyngeal squamous cell carcinomas reveals that HPV integration occurs much less frequently than in cervical cancer[J]. J Clin Virol, 2014, 59(3):195-200.
17
Pedroza-Torres A, Lopez-Urrutia E, Garcia-Castillo V, et al. MicroRNAs in cervical cancer: Evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance[J]. Molecules, 2014, 19(5):6263-6281.
18
Gao P, Zheng J. High-risk HPV E5-induced cell fusion: A critical initiating event in the early stage of HPV-associated cervical cancer[J]. Virol J, 2010, 7:238.
19
Ge Y, Mody DR, Smith D, et al. P16(INK4a) and ProEx C immunostains facilitate differential diagnosis of hyperchromatic crowded groups in liquid-based Papanicolaou tests with menstrual contamination[J]. Acta Cytol, 2012, 56(1):55-61.
20
Bala R, Pinsky BA, Beck AH, et al. P16 is superior to ProEx C in identifying high-grade squamous intraepithelial lesions (HSIL) of the anal canal[J]. Am J Surg Pathol, 2013, 37(5):659-668.
21
Chang S, Smith E, Levin M, et al. Comparative study of ProEx C immunocytochemistry and UroVysion fluorescent in-situ hybridization assays on urine cytology specimens[J]. Cytojournal, 2015, 12:2.
22
Alaghehbandan R, Fontaine D, Bentley J, et al. Performance of ProEx C and PreTect HPV-Proofer E6/E7 mRNA tests in comparison with the hybrid capture 2 HPV DNA test for triaging ASCUS and LSIL cytology[J]. Diagn Cytopathol, 2013, 41(9):767-775.
23
Botti G, Malzone MG, La Mantia E, et al. ProEx c as diagnostic marker for detection of urothelial carcinoma in urinary samples: A review[J]. Int J Med Sci, 2017, 14(6):554-559.
24
Lin LH, Chang SJ, Hu RY, et al. Biomarker discovery for neuroendocrine cervical cancer[J]. Electrophoresis, 2014, 35(14):2039-2045.
25
Mohammed SI, Ren W, Flowers L, et al. Point-of-care test for cervical cancer in LMICs[J]. Oncotarget, 2016, 7(14):18787-18797.
26
Chang JW, Jeon HB, Lee JH, et al. Augmented expression of peroxiredoxin I in lung cancer[J]. Biochem Biophys Res Commun, 2001, 289(2):507-512.
27
Sun ZJ, Zhu L, Lang JH, et al. Proteomic analysis of the uterosacral ligament in postmenopausal women with and without pelvic organ prolapse[J]. Chin Med J (Engl), 2015, 128(23):3191-3196.
28
Kultima K, Nystrom AM, Scholz B, et al. Valproic acid teratogenicity: A toxicogenomics approach. Environ Health Perspect[J], 2004, 112(12):1225-1235.
29
Xu SG, Yan PJ, Shao ZM. Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis[J]. J Cancer Res Clin Oncol, 2010, 136(10):1545-1556.
30
Chae JI, Kim J, Lee SG, et al. Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy[J]. Proteome Sci, 2011, 9:41.
31
Zhao Q, He Y, Wang XL, et al. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma[J]. Clin Transl Oncol, 2015, 17(8):620-631.
32
Decanini A, Nordgaard CL, Feng X, et al. Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration[J]. Am J Ophthalmol, 2007, 143(4):607-615.
33
Seibold P, Hall P, Schoof N, et al. Polymorphisms in oxidative stress-related genes and mortality in breast cancer patients--potential differential effects by radiotherapy?[J]. Breast, 2013, 22(5):817-823.
34
Lee YJ, Cho HN, Jeoung DI, et al. HSP25 overexpression attenuates oxidative stress-induced apoptosis:Roles of ERK1/2 signaling and manganese superoxide dismutase[J]. Free Radic Biol Med, 2004, 36(4):429-444.
35
Morton JP, Maclaren DP, Cable NT, et al. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise[J]. J Appl Physiol (1985), 2006, 101(1):176-182.
36
Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics[J]. Br J Cancer, 2014, 110(7):1748-1758.
37
Wang S, Yang S, Vlantis AC, et al. Expression of antioxidant molecules and heat shock protein 27 in thyroid tumors[J]. J Cell Biochem, 2016, 117(11):2473-2481.
38
Wang RC, Huang CY, Pan TL, et al. Proteomic Characterization of Annexin l (ANX1) and Heat Shock Protein 27 (HSP27) as Biomarkers for Invasive Hepatocellular Carcinoma Cells[J]. PLoS One, 2015, 10(10):e139232.
39
Lomnytska MI, Becker S, Bodin I, et al. Differential expression of ANXA6, HSP27, PRDX2, NCF2, and TPM4 during uterine cervix carcinogenesis: Diagnostic and prognostic value[J]. Br J Cancer, 2011, 104(1):110-119.
40
Hwang YJ, Lee SP, Kim SY, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer[J]. Yonsei Med J, 2009, 50(3):399-406.
41
Smedts F, Ramaekers F, Troyanovsky S, et al. Keratin expression in cervical cancer[J]. Am J Pathol, 1992, 141(2):497-511.
42
Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics[J]. Br J Cancer, 2014, 110(7):1748-1758.
43
Yu LR, Lv JQ, Jin LY, et al. Over-expression of protein kinase Cisoforms (alpha, delta, theta and zeta) in squamous cervical cancer[J]. Neoplasma, 2011, 58(6):491-498.
44
Narisawa-Saito M, Handa K, Yugawa T, et al. HPV16 E6-mediated stabilization of ErbB2 in neoplastic transformation of human cervical keratinocytes[J]. Oncogene, 2007, 26(21):2988-2996.
45
Bae SM, Lee CH, Cho YL, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients[J]. Gynecol Oncol, 2005, 99(1):26-35.
46
Guo L, Zhang C, Zhu J, et al. Proteomic identification of predictive tissue biomarkers of sensitive to neoadjuvant chemotherapy in squamous cervical cancer[J]. Life Sci, 2016, 151:102-108.
47
Zhu X, Lv J, Yu L, et al. Proteomic identification of differentially-expressed proteins in squamous cervical cancer[J]. Gynecol Oncol, 2009, 112(1):248-256.
48
Bae SM, Min HJ, Ding GH, et al. Protein expression profile using two-dimensional gel analysis in squamous cervical cancer patients[J]. Cancer Res Treat, 2006, 38(2):99-107.
49
Bae SM, Lee CH, Cho YL, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients[J]. Gynecol Oncol, 2005, 99(1):26-35.
50
Looi ML, Karsani SA, Rahman MA, et al. Plasma proteome analysis of cervical intraepithelial neoplasia and cervical squamous cell carcinoma[J]. Biosci, 2009, 34(6):917-925.
51
Lin YW, Lai HC, Lin CY, et al. Plasma proteomic profiling for detecting and differentiating in situ and invasive carcinomas of the uterine cervix[J]. Int J Gynecol Cancer, 2006, 16(3):1216-1224.
52
Liu C, Pan C, Shen J, et al. Discrimination analysis of mass spectrometry proteomics for cervical cancer detection[J]. Med Oncol, 2011, 28 Suppl 1:S553-S559.
53
Lokamani I, Looi ML, Md AS, et al. Gelsolin and ceruloplasmin as potential predictive biomarkers for cervical cancer by 2D-DIGE proteomics analysis[J]. Pathol Oncol Res, 2014, 20(1):119-129.
54
Patil A, Bhat S, Pai KM, et al. Ultra-sensitive high performance liquid chromatography-laser-induced fluorescence based proteomics for clinical applications[J]. Proteomics, 2015, 127(Pt A):202-210.
55
Boichenko AP, Govorukhina N, Klip HG, et al. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer[J]. Proteome Res, 2014, 13(11):4995-5007.
56
Rader JS, Malone JP, Gross J, et al. A unified sample preparation protocol for proteomic and genomic profiling of cervical swabs to identify biomarkers for cervical cancer screening[J]. Proteomics Clin Appl, 2008, 2(12):1658-1669.
57
An HT, Yoo S, Ko J. Alpha-Actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of Snail expression and beta-catenin stabilization in cervical cancer[J]. Oncogene, 2016, 35(45):5893-5904.
58
Van Raemdonck GA, Tjalma WA, Coen EP, et al. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid[J]. PLoS One, 2014, 9(9):e106488.
59
Boylan KL, Afiuni-Zadeh S, Geller MA, et al. A feasibility study to identify proteins in the residual Pap test fluid of women with normal cytology by mass spectrometry-based proteomics[J]. Clin Proteomics, 2014, 11(1):30.
60
Panicker G, Ye Y, Wang D, et al. Characterization of the human cervical mucous proteome[J]. Clin Proteomics, 2010, 6(1-2):18-28.
61
Nishikawa K, Rosenblum MG, Newman RA, et al. Resistance of human cervical carcinoma cells to tumor necrosis factor correlates with their increased sensitivity to cisplatin: Evidence of a role for DNA repair and epidermal growth factor receptor[J]. Cancer Res, 1992, 52(17):4758-4765.
62
Yim EK, Lee KH, Kim CJ, et al. Analysis of differential protein expression by cisplatin treatment in cervical carcinoma cells[J]. Int J Gynecol Cancer, 2006, 16(2):690-697.
63
Yim EK, Lee SB, Lee KH, et al. Analysis of the in vitro synergistic effect of 5-fluorouracil and cisplatin on cervical carcinoma cells[J]. Int J Gynecol Cancer, 2006, 16(3):1321-1329.
64
Yim EK, Bae JS, Lee SB, et al. Proteome analysis of differential protein expression in cervical cancer cells after paclitaxel treatment[J]. Cancer Res Treat, 2004, 36(6):395-399.
65
Lee KH, Yim EK, Kim CJ, et al. Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells[J]. Gynecol Oncol, 2005, 98(1):45-53.
66
Masters JR. HeLa cells 50 years on: The good, the bad and the ugly[J]. Nat Rev Cancer, 2002, 2(4):315-319.
67
Pimenta JM, Galindo C, Jenkins D, et al. Estimate of the global burden of cervical adenocarcinoma and potential impact of prophylactic human papillomavirus vaccination[J]. BMC Cancer, 2013, 13:553.
68
Harima Y, Ikeda K, Utsunomiya K, et al. Apolipoprotein C-Ⅱ is a potential serum biomarker as a prognostic factor of locally advanced cervical cancer after chemoradiation therapy[J]. Int J Radiat Oncol Biol Phys, 2013, 87(5):1155-1161.
69
Chai Y, Wang J, Gao Y, et al. Identification of biomarkers for radiation-induced acute intestinal symptoms (RIAISs) in cervical cancer patients by serum protein profiling[J]. J Radiat Res, 2015, 56(1):134-140.
70
Mordhorst LB, Sorbe B, Ahlin C. A study of serum biomarkers associated with relapse of cervical cancer[J]. Anticancer Res, 2012, 32(11):4913-4922.
71
Van Gorp T, Cadron I, Daemen A, et al. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS[J]. Proteome Sci, 2012, 10(1):41.
72
Song DG, Kim YS, Jung BC, et al. Parkin induces upregulation of 40S ribosomal protein SA and posttranslational modification of cytokeratins 8 and 18 in human cervical cancer cells[J]. Appl Biochem Biotechnol, 2013, 171(7):1630-1638.
73
Boichenko AP, Govorukhina N, Klip HG, et al. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer[J]. J Proteome Res, 2014, 13(11):4995-5007.
74
Wang W, Jia HL, Huang JM, et al. Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics[J]. Br J Cancer, 2014, 110(7):1748-1758.
75
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: Relevance to cervical cancer[J]. Expert Rev Proteomics, 2013, 10(5):461-472.
76
Lokamani I, Looi ML, Md AS, et al. Gelsolin and ceruloplasmin as potential predictive biomarkers for cervical cancer by 2D-DIGE proteomics analysis[J]. Pathol Oncol Res, 2014, 20(1):119-129.
77
Richard SA, Jiang Y, Xiang LH, et al. Post-translational modifications of high mobility group box 1 and cancer[J]. Am J Transl Res, 2017, 9(12):5181-5196.
78
Corujo D, Buschbeck M. Post-Translational modifications of H2A histone variants and their role in cancer[J]. Cancers (Basel), 2018, 10(3). pii: E59.
79
Prakasam G, Iqbal MA, Bamezai R, Mazurek S. Posttranslational modifications of pyruvate kinase m2: Tweaks that benefit cancer[J]. Front Oncol, 2018, 8:22.
80
Li G, Wang D, Ma W, et al. Transcriptomic and epigenetic analysis of breast cancer stem cells[J]. Epigenomics, 2018, 10(6):765-783.
81
Mohan R, Held KD, Story MD, et al. Proceedings of the national cancer institute workshop on charged particle radiobiology[J]. Int J Radiat Oncol Biol Phys, 2018, 100(4):816-831.
82
Chen JT, Liu CC, Yu JS, et al. Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells[J]. J Proteomics, 2018, 188:139-151.
83
Liu YL, Wang GQ, Cui HX, et al. MiRNA211 induces apoptosis of cervical cancer SiHa cells via down-regulation of inhibitor of apoptosis proteins[J]. Eur Rev Med Pharmacol Sci, 2018, 22(2):336-342.
84
Laengsri V, Kerdpin U, Plabplueng C, et al. Cervical cancer markers: Epigenetics and microRNAs[J]. Lab Med, 2018.
85
Jiang L, Shi S, Shi Q, et al. MicroRNA-519d-3p inhibits proliferation and promotes apoptosis by targeting HIF-2alpha in cervical cancer under hypoxic conditions[J]. Oncol Res, 2018, 26(7):1055-1062.
86
Poudyal D, Herman A, Adelsberger JW, et al. A novel microRNA, hsa-miR-6852 differentially regulated by Interleukin-27 induces necrosis in cervical cancer cells by downregulating the FoxM1 expression[J]. Sci Rep, 2018, 8(1):900.
87
Li C, Zheng X, Li W, et al. Serum miR-486-5p as a diagnostic marker in cervical cancer: With investigation of potential mechanisms[J]. BMC Cancer, 2018, 18(1):61.
88
Wei H, Zhang JJ, Tang QL. MiR-638 inhibits cervical cancer metastasis through Wnt/beta-catenin signaling pathway and correlates with prognosis of cervical cancer patients[J]. Eur Rev Med Pharmacol Sci, 2017, 21(24):5587-5593.
89
Hua FF, Liu SS, Zhu LH, et al. MiRNA-338-3p regulates cervical cancer cells proliferation by targeting MACC1 through MAPK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5342-5352.
90
Chuanyin L, Xiaona W, Zhiling Y, et al. The association between polymorphisms in microRNA genes and cervical cancer in a Chinese Han population[J]. Oncotarget, 2017, 8(50):87914-87927.
91
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis[J]. Oncotarget, 2017, 8(49):86625-86633.
92
Liang C, Ding J, Yang Y, et al. MicroRNA-433 inhibits cervical cancer progression by directly targeting metadherin to regulate the AKT and beta-catenin signalling pathways[J]. Oncol Rep, 2017, 38(6):3639-3649.
93
Liu GF, Zhang SH, Li XF, et al. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1[J]. Oncotarget, 2017, 8(46):80757-80769.
94
Wang H, Zhao Y, Chen M, Cui J. Identification of novel long non-coding and circular RNAs in human Papillomavirus-Mediated cervical cancer[J]. Front Microbiol, 2017, 8:1720.
95
Varghese VK, Shukla V, Kabekkodu SP, et al. DNA methylation regulated microRNAs in human cervical cancer[J]. Mol Carcinog, 2018, 57(3):370-382.
96
Meng X, Zhao Y, Wang J, et al. Regulatory roles of miRNA-758 and matrix extracellular phosphoglycoprotein in cervical cancer[J]. Exp Ther Med, 2017, 14(4):2789-2794.
97
Lin M, Xue XY, Liang SZ, et al. MiR-187 overexpression inhibits cervical cancer progression by targeting HPV16 E6[J]. Oncotarget, 2017, 8(38):62914-62926.
98
Ou L, Wang D, Zhang H, et al. Decreased expression of MiR-138-5p by LncRNA h19 in cervical cancer promotes tumor proliferation[J]. Oncol Res, 2018, 26(3):401-410.
99
Fang J, Li Y, Zhang J, et al. Correlation between polymorphisms in microRNA-regulated genes and cervical cancer susceptibility in a Xinjiang Uygur population[J]. Oncotarget, 2017, 8(19):31758-31764.
100
Liang B, Li Y, Wang T. A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis[J]. Sci Rep, 2017, 7(1):5624.
101
Zeng Y, Wang KX, Xu H, Hong Y. Integrative miRNA analysis identifies hsa-miR-3154, hsa-miR-7-3, and hsa-miR-600 as potential prognostic biomarker for cervical cancer[J]. J Cell Biochem, 2018, 119(2):1558-1566.
102
Xu Z, Zhou Y, Shi F, et al. Investigation of differentially-expressed microRNAs and genes in cervical cancer using an integrated bioinformatics analysis[J]. Oncol Lett, 2017, 13(4):2784-2790.
103
Gao YL, Zhao ZS, Zhang MY, et al. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR- 424[J]. Oncol Res, 2017, 25(8):1391-1398.
104
Granados-López AJ, Ruiz-Carrillo JL, Servín-González LS, et al. Use of mature miRNA strand selection in miRNAs families in cervical cancer development[J]. Int J Mol Sci, 2017, 18(2). pii: E407.
105
Xu L, Xu Q, Li X, Zhang X. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor- alpha[J]. Mol Med Rep, 2017, 16(4):4659-4663.
106
Phuah NH, Azmi MN, Awang K, et al. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1'S-1'-acetoxychavicol acetate via regulating RSU1[J]. Onco Targets Ther, 2017, 10:1695-1705.
107
Guo M, Zhao X, Yuan X, et al. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer[J]. Oncotarget, 2017, 8(17):28226-28236.
108
Li J, Liu Q, Clark LH, et al. Deregulated miRNAs in human cervical cancer: Functional importance and potential clinical use[J]. Future Oncol, 2017, 13(8):743-753.
109
Sikander M, Hafeez BB, Malik S, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer[J]. Sci Rep, 2016, 6:36594.
110
Kong Q, Tang Z, Xiang F, et al. Diagnostic value of serum hsa-mir-92a in patients with cervical cancer[J]. Clin Lab, 2017, 63(2):335-340.
111
Yeung CL, Tsang TY, Yau PL, et al. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3[J]. Oncotarget, 2017, 8(7):12158-12173.
112
Huang P, Xi J, Liu S. MiR-139-3p induces cell apoptosis and inhibits metastasis of cervical cancer by targeting NOB1[J]. Biomed Pharmacother, 2016, 83:850-856.
113
Lai XJ, Cheng XY, Hu LD. MicroRNA 421 induces apoptosis of c-33a cervical cancer cells via down-regulation of Bcl-xL[J]. Genet Mol Res, 2016, 15(4).
114
Yang CX, Zhang SM, Li J, et al. MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting beta-catenin[J]. Oncol Lett, 2016, 12(6):4983-4990.
115
Xu D, Liu S, Zhang L, et al. MiR-211 inhibits invasion and epithelial-to-mesenchymal transition (EMT) of cervical cancer cells via targeting MUC4[J]. Biochem Biophys Res Commun, 2017, 485(2):556-562.
116
Song L, Liu S, Zhang L, et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway[J]. Tumour Biol, 2016, 37(9):12161-12168.
117
Xia YF, Pei GH, Wang N, et al. MiR-3156-3p is downregulated in HPV-positive cervical cancer and performs as a tumor-suppressive miRNA[J]. Virol J, 2017, 14(1):20.
118
Sharma SS, Roy CR, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol (Dordr), 2016, 39(6):559-572.
119
Yin XZ, Zhao DM, Zhang GX, et al. Effect of miRNA-203 on cervical cancer cells and its underlying mechanism[J]. Genet Mol Res, 2016, 15(3).
120
Jin T, Wu X, Yang H, et al. Association of the miR-17-5p variants with susceptibility to cervical cancer in a Chinese population[J]. Oncotarget, 2016, 7(47):76647-76655.
121
Liu Q, Guo X, Que S, et al. LncRNA RSU1P2 contributes to tumorigenesis by acting as a ceRNA against let-7a in cervical cancer cells[J]. Oncotarget, 2017, 8(27):43768-43781.
122
Fang W, Shu S, Yongmei L, et al. MiR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200[J]. Sci Rep, 2016, 6:33229.
123
Zhao S, Yao DS, Chen JY, Ding N. Aberrant expression of miR-20a and miR-203 in cervical cancer[J]. Asian Pac J Cancer Prev, 2013, 14(4):2289-2293.
124
Zhao S, Yao D, Chen J, et al. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer[J]. Genet Test Mol Biomarkers, 2013, 17(8):631-636.
125
Li MY, Hu XX. Meta-analysis of microRNA expression profiling studies in human cervical cancer[J]. Med Oncol, 2015, 32(6):510.
126
Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma[J]. Int J Mol Med, 2013, 32(3):557-567.
127
Wang X, Li Q, Jin H, et al. MiR-424 acts as a tumor radiosensitizer by targeting aprataxin in cervical cancer[J]. Oncotarget, 2016, 7(47):77508-77515.
128
Gao D, Zhang Y, Zhu M, et al. MiRNA expression profiles of HPV-Infected patients with cervical cancer in the uyghur population in china[J]. PLoS One, 2016, 11(10):e164701.
129
Liu S, Song L, Yao H, et al. MiR-375 is epigenetically downregulated by HPV-16 e6 mediated DNMT1 upregulation and modulates EMT of cervical cancer cells by suppressing lncRNA MALAT1[J]. PLoS One, 2016, 11(9):e163460.
130
Wang S, Cao X, Ding B, et al. The rs767649 polymorphism in the promoter of miR-155 contributes to the decreased risk for cervical cancer in a Chinese population[J]. Gene, 2016, 595(1):109-114.
131
Yang J, Zhang Z, Guo W, et al. Single nucleotide polymorphisms in microRNA genes are associated with cervical cancer susceptibility in a population from Xinjiang Uygur[J]. Oncotarget, 2016, 7(44):71447-71454.
132
Zhang R, Su J, Xue SL, et al. HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer[J]. Am J Cancer Res, 2016, 6(2):312-320.
133
Hang D, Zhou W, Jia M, et al. Genetic variants within microRNA-binding site of RAD51B are associated with risk of cervical cancer in Chinese women[J]. Cancer Med, 2016, 5(9):2596-2601.
134
Pedroza-Torres A, Fernandez-Retana J, Peralta-Zaragoza O, et al. A microRNA expression signature for clinical response in locally advanced cervical cancer[J]. Gynecol Oncol, 2016, 142(3):557-565.
135
Wang X, Xia Y. MicroRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2[J]. Biochem Biophys Res Commun, 2016, 475(2):169-175.
136
Zhang J, Wang F, Xu J, et al. Micro ribonucleic acid-93 promotes oncogenesis of cervical cancer by targeting RAB11 family interacting protein 1[J]. Obstet Gynaecol Res, 2016, 42(9):1168-1179.
137
Xu J, Wan X, Chen X, et al. MiR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6[J]. Sci Rep, 2016, 6:28968.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[3] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[4] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[5] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[6] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[7] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[8] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[9] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[10] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 孙欣欣, 刘军, 陈超伍, 孙超. 超声内镜引导细针穿刺抽吸术在胰腺占位性病变中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 418-421.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要