切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 313 -316. doi: 10.3877/cma.j.issn.2095-1221.2017.05.011

所属专题: 文献

综述

羊膜间充质干细胞的免疫调节功能研究进展
欧阳文1, 廖正权1, 夏增飞1, 高雅2, 郭燕舞1, 孙海涛1,()   
  1. 1. 510282 广州,南方医科大学珠江医院神经外科;510282 广州,南方医科大学第二临床医学院
    2. 510515 广州,南方医科大学南方医院血液科
  • 收稿日期:2017-06-11 出版日期:2017-10-01
  • 通信作者: 孙海涛
  • 基金资助:
    国家自然科学基金(81671193,81701243); 广东省自然科学基金(2014A030310373); 广州市珠江科技新星专项(201710010047); 中国科学院再生生物学重点实验室开放课题资助(KLRB201503)

Progress of immune regulatory function of Amniotic mesenchymal stem cells

Wen Ouyang1, Zhengquan Liao1, Zengfei Xia1, Ya Gaoa2, Yanwu Guo1, Haitao Sun1,()   

  1. 1. Department of neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China
    2. Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2017-06-11 Published:2017-10-01
  • Corresponding author: Haitao Sun
  • About author:
    Corresponding author: Sun Haitao, Email:
引用本文:

欧阳文, 廖正权, 夏增飞, 高雅, 郭燕舞, 孙海涛. 羊膜间充质干细胞的免疫调节功能研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(05): 313-316.

Wen Ouyang, Zhengquan Liao, Zengfei Xia, Ya Gaoa, Yanwu Guo, Haitao Sun. Progress of immune regulatory function of Amniotic mesenchymal stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(05): 313-316.

羊膜间充质干细胞是一类来源于羊膜的干细胞。相比较其他来源的干细胞,羊膜间充质干细胞具有低免疫原性和免疫抑制的特点,这使得羊膜间充质干细胞的移植副作用相对较小。羊膜间充质干细胞移植治疗一些炎症相关疾病,取得了较好的效果,相关的临床试验也逐步开展。现针对羊膜间充质干细胞在免疫调节方面的机制虽然有一定的认识,但仍不是很清楚。本文针对现阶段关于羊膜间充质干细胞的免疫调节功能进行讨论,为进一步开展相关方面的研究奠定理论基础。

The amniotic mesenchymal stem cell is a stem cell derived from the amnion. Compared with other sources of stem cells, the amniotic mesenchymal stem cell possesses the characteristics of low immunogenicity and immunosuppression, for which makes the side effect of transplantation of the amniotic mesenchymal stem cell relatively smaller. The efficient effects of the treatment have been shown in some diseases, which are associated with inflammation. Relevant clinical trials were carried out. Although some of the mechanisms of immunomodulation of amniotic mesenchymal stem cell has been found, but they are not completely clarified. This review outlines the immune regulatory function of the amniotic mesenchymal stem cell, which provides some information for the further studies.

1
Chang YJ, Hwang SM, Tseng CP, et al. Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane[J].Cells Tissues Organs, 2010, 192(2):93-105.
2
Cargnoni A, Piccinelli EC, Ressel L, et al. Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms[J]. Cytotherapy, 2014, 16(1):17-32.
3
Sant'anna LB, Cargnoni A, Ressel L, et al. Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model[J]. Cell Transplant, 2011, 20(3):441-453.
4
Tsuda H, Yamahara K, Ishikane S, et al. Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis[J]. Am J Physiol Renal Physiol, 2010, 299(5):F1004-F1013.
5
Sun H, Hou Z, Yang H, et al. Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model[J]. Cell Tissue Res, 2014, 357(3):571-582.
6
何妲,彭琳,黄生建,等.三种成体干细胞对脂多糖诱导RAW264.7细胞炎症状态的影响[J].南方医科大学学报, 2014 (11):1627-1631.
7
Magatti M, Vertua E, De Munari S, et al. Human amnion favours tissue repair by inducing the M1-to-M2 Switch and enhancing M2 macrophage features[J]. J Tissue Eng Regen Med, 2016 .
8
Wolbank S, Peterbauer A, Fahrner MA, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: A comparison with human mesenchymal stem cells from adipose tissue[J]. Tissue Eng, 2007, 13(6):1173-1183.
9
Magatti M, De Munari S, Vertua E, et al. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes[J]. Cell Transplant, 2009, 18(8):899-914.
10
Magatti M, De Munari S, Vertua E, et al. Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest[J]. J Cell Mol Med, 2012, 16(9):2208-2218.
11
Tan JL, Chan ST, Wallace EM, et al. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization[J]. Cell Transplant, 2014, 23(3):319-328.
12
Onishi R, Ohnishi S, Higashi R, et al. Human Amnion-Derived mesenchymal stem cell transplantation ameliorates dextran sulfate Sodium-Induced severe colitis in rats[J]. Cell Transplant, 2015, 24(12):2601-2614.
13
Kawakubo K, Ohnishi S, Fujita H, et al. Effect of fetal Membrane-Derived mesenchymal stem cell transplantation in rats with acute and chronic pancreatitis[J]. Pancreas, 2016, 45(5):707-713.
14
Kronsteiner B, Peterbauer-Scherb A, Grillari-Voglauer R, et al. Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation[J]. Cell Immunol, 2011, 267(1):30-38.
15
He H, Zhang S, Tighe S, et al. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype[J]. J Biol Chem, 2013, 288(36):25792-25803.
16
Yamahara K, Harada K, Ohshima M, et al. Comparison of angiogenic, cytoprotective, and immunosuppressive properties of human amnion- and chorion-derived mesenchymal stem cells[J]. PLoS One, 2014, 9(2):e88319.
17
Shu J, He X, Zhang L, et al. Human amnion mesenchymal cells inhibit lipopolysaccharide-induced TNF-αand IL-1βproduction in THP-1 cells[J]. Biol Res, 2015, 48(1):69.
18
Kang JW, Koo HC, Hwang SY, et al. Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells[J]. J Vet Sci, 2012, 13(1):23-31.
19
Li C, Zhang W, Jiang X, et al. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells[J]. Cell Tissue Res, 2007, 330(3):437-446.
20
Toda A, Sawada K, Fujikawa T, et al. Targeting inhibitor ofκB kinaseβprevents Inflammation-Induced preterm delivery by inhibiting IL-6 production from amniotic cells[J]. Am J Pathol, 2016, 186(3):616-629.
21
Dabrowski FA, Burdzinska A, Kulesza A, et al. Mesenchymal stem cells from human amniotic membrane and umbilical cord can diminish immunological response in an in vitro allograft model[J]. Gynecol Obstet Invest, 2017, 82(3):267-275.
22
Lange-Consiglio A, Rossi D, Tassan S, et al. Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuriesin vivo[J]. Stem Cells Dev, 2013, 22(22):3015-3024.
23
Rossi D, Pianta S, Magatti M, et al. Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity[J]. PLoS One, 2012, 7(10):e46956.
24
Zaslona Z, Serezani CH, Okunishi K, et al. Prostaglandin E2 restrains macrophage maturation via E prostanoid receptor 2/protein kinase A signaling[J]. Blood, 2012, 119(10):2358-2367.
25
Deng W, Chen W, Zhang Z, et al. Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus[J].Clin Immunol, 2015, 161(2):209-216.
26
宋洁,高雅,卓伟彬,等.人羊膜间充质干细胞与骨髓间充质干细胞对外周血淋巴细胞的免疫调节作用比较[J].南方医科大学学报, 2017, 37(6):780-785.
27
La Rocca G, Lo Iacono M, Corsello T, et al. Human wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy[J]. Curr Stem Cell Res Ther, 2013, 8(1):100-113.
28
Mareschi K, Castiglia S, Sanavio F, et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta[J]. Exp Hematol, 2016, 44(2):138-150.e1.
29
Pianta S, Bonassi Signoroni P, Muradore I, et al. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets[J]. Stem Cell Rev, 2015, 11(3):394-407.
30
Xue Y, Miao Z, Sun H. Effects of human amniotic mesenchymal stromal cells on rabbit T-cell responses in a xenolymphocyte reaction assay[J]. Exp Clin Transplant, 2014, 12(3):253-260.
31
Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J].Blood, 2007, 109(1):228-234.
32
Pianta S, Magatti M, Vertua E, et al. Amniotic mesenchymal cells from pre-eclamptic placentae maintain immunomodulatory features as healthy controls[J]. J Cell Mol Med, 2016, 20(1):157-169.
33
Magatti M, Caruso M, De Munari S, et al. Human amniotic Membrane-Derived mesenchymal and epithelial cells exert different effects on Monocyte-Derived dendritic cell differentiation and function[J]. Cell Transplant, 2015, 24(9):1733-1752.
34
Banas R, Miller C, Guzik L, et al. Amnion-derived multipotent progenitor cells inhibit blood monocyte differentiation into mature dendritic cells[J].Cell Transplant, 2014, 23(9):1111-1125.
[1] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[2] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[3] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[4] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[5] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[6] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[7] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[8] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[9] 李玲, 于艳艳, 王玉杰, 赵凯. 毛细支气管炎患儿血清25(OH)D水平与Th17/Treg平衡的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 718-720.
[10] 刘娟丽, 马四清, 陈强. 肺表面活性蛋白-D功能及其在肺部常见疾病中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 167-172.
[11] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[12] 刘懿, 潘敏, 陈尧. 卢帕他定与依巴斯汀联合治疗慢性荨麻疹的效果及对补体水平和T淋巴细胞的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 189-194.
[13] 韩永清, 饶敏超, 傅峰, 黄开荣. 参芪十一味颗粒联合FOLFOX4方案化疗对晚期结直肠癌患者的近期疗效及其对血清IL-35、IL-37和T淋巴细胞亚群的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 400-404.
[14] 黄山, 吕松琴, 张娟, 徐丽萍, 李佳能, 李晓非. 云南地区新发艾滋病合并其他病原微生物感染患者外周血T淋巴细胞亚群分布特征初探[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 16-20.
[15] 范茹, 刘宇清, 胡晓榕, 王轶奇, 张芬, 岑星, 卜玉洁, 陈俊伟. 系统性红斑狼疮患者长链非编码RNA表达变化及其与CD8+T细胞相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 184-189.
阅读次数
全文


摘要