切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (04) : 237 -241. doi: 10.3877/cma.j.issn.2095-1221.2017.04.009

所属专题: 文献

综述

巨噬细胞在动脉粥样硬化发病机制中作用的研究进展
李伟1, 朱莉1,(), 阮中宝1, 任寅1   
  1. 1. 225300 扬州大学附属泰州市人民医院心内科
  • 收稿日期:2017-03-28 出版日期:2017-08-01
  • 通信作者: 朱莉

Research progress in the mechanism of macrophages in atherosclerosis

Wei Li1, Li Zhu1,(), Zhongbao Ruan1, Yin Ren1   

  1. 1. Department of Cardiology, Taizhou People’s Hospital, Taizhou 225300, China
  • Received:2017-03-28 Published:2017-08-01
  • Corresponding author: Li Zhu
  • About author:
    Corresponding author:Zhu Li, Email:
引用本文:

李伟, 朱莉, 阮中宝, 任寅. 巨噬细胞在动脉粥样硬化发病机制中作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(04): 237-241.

Wei Li, Li Zhu, Zhongbao Ruan, Yin Ren. Research progress in the mechanism of macrophages in atherosclerosis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(04): 237-241.

动脉粥样硬化(AS)目前被医学研究界公认为是一种慢性炎症反应,其发生发展过程中,巨噬细胞发挥着重要的作用。巨噬细胞可以吞噬性炎症细胞,填充AS损伤部位,积极参与胆固醇堆积,还可通过维持促炎微环境促进复杂和不稳定斑块的形成;在另一方面,抗炎巨噬细胞有助于组织修复重塑和斑块稳定。因此,对巨噬细胞作用的研究可能成为抗AS治疗的突破口,以减少单核细胞向损伤部位募集,抑制促炎性巨噬细胞活性,刺激胆固醇流出以及减少脂质储存。针对目前存在的问题,仍需更多深入的研究来创建不同巨噬细胞表型综合分类,并确定其在AS的发病机制中的作用。本文列举和简略介绍了巨噬细胞在AS过程中表现出的多样性和活化性,期待为今后有关巨噬细胞的AS研究提供参考。

Atherosclerosis (AS) is thought to be a chronic inflammatory response, in which macrophages play an important role. Macrophages can engulf inflammatory cells and fill the site of atherosclerotic lesions, which also can actively participate in cholesterol accumulation. They can also promote the formation of complex and unstable plaques. Meanwhile antiinflammatory macrophages contribute to tissue repair remodeling and plaque stabilization. Therefore, the mechanism of macrophage research may be a breakthrough in the treatment of atherosclerosis, so as to reduce the accumulation of mononuclear cells to the injured site, inhibit the activity of proinflammatory macrophages, promote cholesterol outflow, and reduce lipid storage. More in-depth studies are still needed to create a comprehensive classification of phenotypes for different macrophages and to determine their roles in the pathogenesis of atherosclerosis. In this paper, we discuss the diversity and activation of the macrophages in the process of atherosclerosis and provide a reference for the study of atherosclerosis based on macrophages.

[1]
Krauss RM. Lipoprotein subfractions and cardiovascular disease risk[J]. Curr Opin Lipidol, 2010, 21(4):305-311.
[2]
Tertov VV, Orekhov AN, Kacharava AG, et al. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis[J]. Exp Mol Pathol, 1990, 52(3):300-308.
[3]
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10):709-721.
[4]
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis[J]. Nat Rev Immunol, 2014, 14(6):392-404.
[5]
Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells[J]. Cardiovasc Res, 2014, 103(4):438-451.
[6]
Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis[J]. Circ Res, 2014, 114(11):1757-1771.
[7]
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation[J]. J Leukoc Biol, 2007, 81(3):584-592.
[8]
Cros J, Cagnard N, Woollard K, et al. Human CD14 dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors[J]. Immunity, 2010, 33(3):375-386.
[9]
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2007, 27(11):2292-2301.
[10]
Combadi E, Ley K. Vascular adhesion molecules bined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice[J]. Circulation, 2008, 117(13):1649-1657.
[11]
Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(10):1424-1432.
[12]
Novoselov VV, Sazonova MA, Ivanova EA, et al. Study of the activated macrophage transcriptome[J]. Exp Mol Pathol, 2015, 99(3):575-580.
[13]
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1):14-20.
[14]
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184(1):436-445.
[15]
Zizzo G, Hilliard BA, Monestier M, et al. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction[J]. J Immunol, 2012, 189(7):3508-3520.
[16]
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13:453-461.
[17]
Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic Switch of macrophages to an M2-like phenotype is Independent of interleukin-4 receptor alpha (IL-4Rα) signaling[J]. Inflammation, 2013, 36(4):921-931.
[18]
Gleissner CA, Shaked I, Little KM, et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages[J]. J Immunol, 2010, 184(9):4810-4818.
[19]
Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis[J]. Front Physiol, 2012, 3:1.
[20]
Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
[21]
Stchain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
[22]
Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways[J]. Circ Res, 2011, 108(8):985-995.
[23]
Orekhov AN, Sobenin IA, Gavrilin MA, et al. Macrophages in immunopathology of atherosclerosis: a target for diagnostics and therapy[J]. Curr Pharm Des, 2015, 21(9):1172-1179.
[24]
Boyle JJ, Harrington HA, Piper E, et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype[J]. Am J Pathol, 2009, 174(3):1097-1108.
[25]
Boyle JJ, Johns M, Kampfer T, et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated Iron handling and foam cell protection[J]. Circ Res, 2012, 110(1):20-33.
[26]
Orekhov AN, Nikiforov NG, Elizova NV, et al. Phenomenon of individual difference in human monocyte activation[J]. Exp Mol Pathol, 2015, 99(1):151-154.
[27]
Natoli G, Monticelli S. Macrophage activation: glancing into diversity[J]. Immunity, 2014, 40(2):175-177.
[28]
Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells[J]. Cell, 2013, 152(1/2):157-171.
[29]
Orekhov AN, Zhelankin AV, Kolmychkova KI, et al. Susceptibility of monocytes to activation correlates with atherogenic mitochondrial DNA mutations[J]. Exp Mol Pathol, 2015, 99(3):672-676.
[30]
Al-Sharea A, Lee MK, Moore XL, et al. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype[J]. Thromb Haemost, 2016, 115(4):762-772.
[31]
Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer[J]. Nat Immunol, 2010, 11(2):155-161.
[32]
Bae YS, Lee JH, Choi SH, et al. Macrophages generate reactive Oxygen species in response to minimally oxidized low-density lipoprotein[J]. Circ Res, 2009, 104(2):210-218.
[33]
Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive Oxygen species-dependent NLRP3 inflammasome activation[J]. Biochem Biophys Res Commun, 2012, 425(2):121-126.
[34]
Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2[J]. Circ Res, 2010, 107(6):737-746.
[35]
Huang Z, Li W, Wang R, et al. 7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages[J]. Life Sci, 2010, 87(19/22):651-657.
[36]
Huber J, Boechzelt H, Karten B, et al. Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway[J]. Arterioscler Thromb Vasc Biol, 2002, 22(4):581-586.
[37]
Yakubenko VP, Bhattacharjee A, Pluskota E, et al. αMβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation[J]. Circ Res, 2011, 108(5):544-554.
[38]
Boyanovsky BB, Li X, Shridas P, et al. Bioactive products generated by group V sPLA(2) hydrolysis of LDL activate macrophages to secrete pro-inflammatory cytokines[J]. Cytokine, 2010, 50(1):50-57.
[39]
Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors[J]. Am J Physiol Endocrinol Metab, 2011, 300(1):E145-E154.
[40]
Ishiyama J, Taguchi R, Yamamoto A, et al. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells[J]. Atherosclerosis, 2010, 209(1):118-124.
[41]
Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem, 2002, 277(51):49982-49988.
[42]
Miller YI, Choi SH, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity[J]. Circ Res, 2011, 108(2):235-248.
[43]
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease[J]. Vasc Health Risk Manag, 2015, 11:525-532.
[44]
Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles[J]. Curr Opin Lipidol, 2011, 22(5):386-393.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[3] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[4] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[5] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[6] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[11] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[12] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[13] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[14] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[15] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
阅读次数
全文


摘要