切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (04) : 237 -241. doi: 10.3877/cma.j.issn.2095-1221.2017.04.009

所属专题: 文献

综述

巨噬细胞在动脉粥样硬化发病机制中作用的研究进展
李伟1, 朱莉1,(), 阮中宝1, 任寅1   
  1. 1. 225300 扬州大学附属泰州市人民医院心内科
  • 收稿日期:2017-03-28 出版日期:2017-08-01
  • 通信作者: 朱莉

Research progress in the mechanism of macrophages in atherosclerosis

Wei Li1, Li Zhu1,(), Zhongbao Ruan1, Yin Ren1   

  1. 1. Department of Cardiology, Taizhou People’s Hospital, Taizhou 225300, China
  • Received:2017-03-28 Published:2017-08-01
  • Corresponding author: Li Zhu
  • About author:
    Corresponding author:Zhu Li, Email:
引用本文:

李伟, 朱莉, 阮中宝, 任寅. 巨噬细胞在动脉粥样硬化发病机制中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(04): 237-241.

Wei Li, Li Zhu, Zhongbao Ruan, Yin Ren. Research progress in the mechanism of macrophages in atherosclerosis[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(04): 237-241.

动脉粥样硬化(AS)目前被医学研究界公认为是一种慢性炎症反应,其发生发展过程中,巨噬细胞发挥着重要的作用。巨噬细胞可以吞噬性炎症细胞,填充AS损伤部位,积极参与胆固醇堆积,还可通过维持促炎微环境促进复杂和不稳定斑块的形成;在另一方面,抗炎巨噬细胞有助于组织修复重塑和斑块稳定。因此,对巨噬细胞作用的研究可能成为抗AS治疗的突破口,以减少单核细胞向损伤部位募集,抑制促炎性巨噬细胞活性,刺激胆固醇流出以及减少脂质储存。针对目前存在的问题,仍需更多深入的研究来创建不同巨噬细胞表型综合分类,并确定其在AS的发病机制中的作用。本文列举和简略介绍了巨噬细胞在AS过程中表现出的多样性和活化性,期待为今后有关巨噬细胞的AS研究提供参考。

Atherosclerosis (AS) is thought to be a chronic inflammatory response, in which macrophages play an important role. Macrophages can engulf inflammatory cells and fill the site of atherosclerotic lesions, which also can actively participate in cholesterol accumulation. They can also promote the formation of complex and unstable plaques. Meanwhile antiinflammatory macrophages contribute to tissue repair remodeling and plaque stabilization. Therefore, the mechanism of macrophage research may be a breakthrough in the treatment of atherosclerosis, so as to reduce the accumulation of mononuclear cells to the injured site, inhibit the activity of proinflammatory macrophages, promote cholesterol outflow, and reduce lipid storage. More in-depth studies are still needed to create a comprehensive classification of phenotypes for different macrophages and to determine their roles in the pathogenesis of atherosclerosis. In this paper, we discuss the diversity and activation of the macrophages in the process of atherosclerosis and provide a reference for the study of atherosclerosis based on macrophages.

[1]
Krauss RM. Lipoprotein subfractions and cardiovascular disease risk[J]. Curr Opin Lipidol, 2010, 21(4):305-311.
[2]
Tertov VV, Orekhov AN, Kacharava AG, et al. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis[J]. Exp Mol Pathol, 1990, 52(3):300-308.
[3]
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10):709-721.
[4]
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis[J]. Nat Rev Immunol, 2014, 14(6):392-404.
[5]
Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells[J]. Cardiovasc Res, 2014, 103(4):438-451.
[6]
Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis[J]. Circ Res, 2014, 114(11):1757-1771.
[7]
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation[J]. J Leukoc Biol, 2007, 81(3):584-592.
[8]
Cros J, Cagnard N, Woollard K, et al. Human CD14 dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors[J]. Immunity, 2010, 33(3):375-386.
[9]
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2007, 27(11):2292-2301.
[10]
Combadi E, Ley K. Vascular adhesion molecules bined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice[J]. Circulation, 2008, 117(13):1649-1657.
[11]
Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(10):1424-1432.
[12]
Novoselov VV, Sazonova MA, Ivanova EA, et al. Study of the activated macrophage transcriptome[J]. Exp Mol Pathol, 2015, 99(3):575-580.
[13]
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1):14-20.
[14]
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184(1):436-445.
[15]
Zizzo G, Hilliard BA, Monestier M, et al. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction[J]. J Immunol, 2012, 189(7):3508-3520.
[16]
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13:453-461.
[17]
Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic Switch of macrophages to an M2-like phenotype is Independent of interleukin-4 receptor alpha (IL-4Rα) signaling[J]. Inflammation, 2013, 36(4):921-931.
[18]
Gleissner CA, Shaked I, Little KM, et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages[J]. J Immunol, 2010, 184(9):4810-4818.
[19]
Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis[J]. Front Physiol, 2012, 3:1.
[20]
Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
[21]
Stchain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
[22]
Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways[J]. Circ Res, 2011, 108(8):985-995.
[23]
Orekhov AN, Sobenin IA, Gavrilin MA, et al. Macrophages in immunopathology of atherosclerosis: a target for diagnostics and therapy[J]. Curr Pharm Des, 2015, 21(9):1172-1179.
[24]
Boyle JJ, Harrington HA, Piper E, et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype[J]. Am J Pathol, 2009, 174(3):1097-1108.
[25]
Boyle JJ, Johns M, Kampfer T, et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated Iron handling and foam cell protection[J]. Circ Res, 2012, 110(1):20-33.
[26]
Orekhov AN, Nikiforov NG, Elizova NV, et al. Phenomenon of individual difference in human monocyte activation[J]. Exp Mol Pathol, 2015, 99(1):151-154.
[27]
Natoli G, Monticelli S. Macrophage activation: glancing into diversity[J]. Immunity, 2014, 40(2):175-177.
[28]
Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells[J]. Cell, 2013, 152(1/2):157-171.
[29]
Orekhov AN, Zhelankin AV, Kolmychkova KI, et al. Susceptibility of monocytes to activation correlates with atherogenic mitochondrial DNA mutations[J]. Exp Mol Pathol, 2015, 99(3):672-676.
[30]
Al-Sharea A, Lee MK, Moore XL, et al. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype[J]. Thromb Haemost, 2016, 115(4):762-772.
[31]
Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer[J]. Nat Immunol, 2010, 11(2):155-161.
[32]
Bae YS, Lee JH, Choi SH, et al. Macrophages generate reactive Oxygen species in response to minimally oxidized low-density lipoprotein[J]. Circ Res, 2009, 104(2):210-218.
[33]
Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive Oxygen species-dependent NLRP3 inflammasome activation[J]. Biochem Biophys Res Commun, 2012, 425(2):121-126.
[34]
Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2[J]. Circ Res, 2010, 107(6):737-746.
[35]
Huang Z, Li W, Wang R, et al. 7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages[J]. Life Sci, 2010, 87(19/22):651-657.
[36]
Huber J, Boechzelt H, Karten B, et al. Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway[J]. Arterioscler Thromb Vasc Biol, 2002, 22(4):581-586.
[37]
Yakubenko VP, Bhattacharjee A, Pluskota E, et al. αMβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation[J]. Circ Res, 2011, 108(5):544-554.
[38]
Boyanovsky BB, Li X, Shridas P, et al. Bioactive products generated by group V sPLA(2) hydrolysis of LDL activate macrophages to secrete pro-inflammatory cytokines[J]. Cytokine, 2010, 50(1):50-57.
[39]
Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors[J]. Am J Physiol Endocrinol Metab, 2011, 300(1):E145-E154.
[40]
Ishiyama J, Taguchi R, Yamamoto A, et al. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells[J]. Atherosclerosis, 2010, 209(1):118-124.
[41]
Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem, 2002, 277(51):49982-49988.
[42]
Miller YI, Choi SH, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity[J]. Circ Res, 2011, 108(2):235-248.
[43]
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease[J]. Vasc Health Risk Manag, 2015, 11:525-532.
[44]
Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles[J]. Curr Opin Lipidol, 2011, 22(5):386-393.
[1] 马晓菊, 梁潇, 段云友, 袁丽君, 赵萍. NBAV脂质纳泡对ApoE -/-小鼠动脉粥样硬化病变的评估和干预[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 608-616.
[2] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[3] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[4] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[5] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[6] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[9] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[10] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[11] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[12] 石佳娜, 钱琳艳, 姬凯悦, 祁金文, 胡情, 孙佳斌. 从PVAT 白色脂肪棕色化角度探讨中药在防治动脉粥样硬化中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 853-858.
[13] 温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.
[14] 吴晓明, 翟仰魁, 王娟, 张硕, 许杰, 潘从清. 男性2 型糖尿病患者空腹C 肽和定量胰岛素敏感性检测指数与血浆致动脉粥样硬化指数的相关性[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 288-294.
[15] 唐欣, 翟文海, 王润婷, 周胜宇, 靳航. 补体在缺血性卒中疾病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 382-392.
阅读次数
全文


摘要