切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2017, Vol. 07 ›› Issue (04) : 195 -201. doi: 10.3877/cma.j.issn.2095-1221.2017.04.002

所属专题: 文献

论著

利用析因设计法优化神经干细胞分化为多巴胺能神经元的诱导方案
宋振涛1, 陈恒1, 王帅1, 田振辉1, 刘小盾1, 曲廷瑜1,()   
  1. 1. 250012 济南,山东省齐鲁干细胞工程有限公司
  • 收稿日期:2017-02-14 出版日期:2017-08-01
  • 通信作者: 曲廷瑜
  • 基金资助:
    山东省2016年重点研发计划(创新型产业集群)项目(2016ZDJQ0104); 泰山学者建设工程专项经费(tshw201502002)

Optimization of induced differentiation of human neural stem cells into dopaminergic neurons by factorial design

Zhentao Song1, Heng Chen1, Shuai Wang1, Zhenhui Tian1, Xiaodun Liu1, Tingyu Qu1,()   

  1. 1. Shandong Province Qilu Stem Cells Engineering Company Limited, Jinan 250012, China
  • Received:2017-02-14 Published:2017-08-01
  • Corresponding author: Tingyu Qu
  • About author:
    Corresponding author: Qu Tingyu, Email:
引用本文:

宋振涛, 陈恒, 王帅, 田振辉, 刘小盾, 曲廷瑜. 利用析因设计法优化神经干细胞分化为多巴胺能神经元的诱导方案[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(04): 195-201.

Zhentao Song, Heng Chen, Shuai Wang, Zhenhui Tian, Xiaodun Liu, Tingyu Qu. Optimization of induced differentiation of human neural stem cells into dopaminergic neurons by factorial design[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(04): 195-201.

目的

优化实验设计将人神经干细胞(hNSCs)高比例诱导分化为多巴胺能神经元。

方法

从aFGF、dbcAMP、普拉克索(PRX)、TPA和forskolin共计5种诱导因子中,使用单因素方法筛选出对hNSCs诱导为多巴胺能神经元有显著作用的诱导因子,显著性检验使用student's t检验。之后使用析因设计方法对选出的显著因子的诱导作用进行定量评估,找出每个因子对hNSCs诱导为多巴胺能神经元的诱导规律,统计学显著性使用方差分析。最后使用最快上升法找到每个显著因子的最佳浓度。

结果

根据初步的单因素筛选实验,aFGF、dbcAMP、TPA被认为是对hNSCs诱导为多巴胺能神经元起诱导作用的因子。使用析因设计对aFGF、dbcAMP和TPA的因子效应进行建模,得出在初始的浓度下,aFGF和dbcAMP为阳性诱导因子,TPA为阴性诱导因子,并得出三者的浓度变化比例为0.29 : 0.90 : -0.39。选取三者的步长分别为11 ng/ml、35 μmol/L和-15 nmol/L,使用最快上升法优化出三者最佳的浓度分别为166?ng/ml、310 μmol/L和10 nmol/L。最终多巴胺能神经元诱导比例可以达到(6.56±0.07)﹪,相比较对照提高了23.8﹪。

结论

析因设计法可以有效的优化hNSCs诱导分化为多巴胺能神经元。

Objective

To induce the differentiation of human neural stem cells (hNSCs) into dopaminergic neurons.

Methods

From a total of 5 kinds of inducing factors including aFGF, dbcAMP, pramipexole (PRX) , TPA (phorbol-12-myristae-13-acetate) , forskolin, single factor experiments were used to screen significant factors which play an important role in inducing hNSCs into dopaminergic neurons, and significance tests were tested by student's t. Factorial design was used to evaluate the inducing effect of the selected significant factors and to find out how these factors affect the induced dopaminergic neuron positive ratio. Statistical significance was tested by analysis of variance. Finally, the optimal concentration of each significant factor was determined by using the steepest-ascent method.

Results

According to single factor experiments, aFGF, dbcAMP and TPA were considered to be important factors in inducing differentiation of dopaminergic neurons form hNSCs. Inducing effect of aFGF, dbcAMP and TPA was modeled by factorial design. These results showed that aFGF and dbcAMP were positive factors and TPA was negative factor at the initial concentrations. The ratio of concentration changes in aFGF, dbcAMP and TPA should be 0.29 : 0.90 : -0.39. The stepwise of aFGF, dbcAMP and TPA used in the steepest-ascent method was selected as 11 ng/ml, 35 μmol/L and -15 nmol/L, respectively. Then, the optimal concentration of aFGF, dbcAMP and TPA was achieved at 166 ng/ml, 310 μmol/L and 10 nmol/L. The optimal dopaminergic neuron positive ratio was (6.56±0.07) ﹪, which increased by 23.8﹪ comparing to control group.

Conclusion

Factorial design can effectively optimize the differentiation of hNSCs into dopaminergic neurons.

表1 析因设计因子水平表
表2 析因设计及结果
图1 光学显微镜下观察诱导因子诱导出来的β-tubulin Ⅲ和TH阳性细胞(免疫荧光染色,×400)
图2 显著因子筛选
表3 最快上升法结果
图3 光学显微镜下观察最快上升法最佳诱导方案的β-tubulin Ⅲ和TH阳性细胞(免疫荧光染色,×400)
[1]
Suzuki S, Kawamata J, Iwahara N, et al. Intravenous mesenchymal stem cell administration exhibits therapeutic effects against 6-hydroxydopamine-induced dopaminergic neurodegeneration and glial activation in rats[J]. Neurosci Lett, 2015, 584:276-281.
[2]
Peng SP, Copray S. Comparison of Human Primary with Human iPS Cell-Derived Dopaminergic Neuron Grafts in the Rat Model for Parkinson's Disease[J]. Stem Cell Rev, 2016,12(1):105-120.
[3]
Tian LP, Zhang S, Zhang YJ, et al. Lmx1b can promote the differentiation of embryonic stem cells to dopaminergic neurons associated with Parkinson's disease[J]. Biotechnol Lett, 2012, 34(7):1167-1174.
[4]
Christophersen NS, Meijer X, Jørgensen JR, et al. Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain[J]. Brain Research Bulletin, 2006, 70(4-6):457-466.
[5]
Mariani M, Karki R, Spennato M, et al. Class III β-tubulin in normal and cancer tissues[J]. Gene, 2015, 563(2):109-114.
[6]
White RB, Thomas MG. Moving beyond tyrosine hydroxylase to define dopaminergic neurons for use in cell replacement therapies for Parkinson's disease[J]. CNS & neurological disorders drug targets, 2012, 11(4):340.
[7]
Moreno EL, Hachi S, Hemmer K, et al. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture[J]. Lab on a Chip, 2015, 15(11):2419-2428.
[8]
Chen M, Lin H, Chiu H, et al. Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B-GFP transgenic mice[J]. Dev Neurobiol, 2015, 75(3):232-248.
[9]
Yang H, Wang J, Wang F, et al. Dopaminergic neuronal differentiation from the forebrain-derived human neural stem cells induced in cultures by using a combination of BMP-7 and pramipexole with growth factors[J]. Front Neural Circuits, 2016, 10:29.
[10]
Bono F, Savoia P, Guglielmi A, et al. Role of dopamine D2/D3 receptors in development, plasticity, and neuroprotection in human iPSC-Derived midbrain dopaminergic neurons[J]. Mol Neurobiol, 2017.
[11]
Box GE, Hunter JS, Hunter WG. Statistics for experimenters:design, innovation, and discovery[M]. Vol. 2. New York: Wiley-Interscience, 2005.
[12]
Iacovitti L, Stull ND, Jin H. Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line[J]. Brain Research, 2001, 912(1):99-104.
[13]
Scintu F, Reali C, Pillai R, et al. Differentiation of human bone marrow stem cells into cells with a neural phenotype:diverse effects of two specific treatments[J]. BMC Neuroscience, 2006, 7:14.
[14]
Cabell L, Audesirk G. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons[J]. Int J Dev Neurosci, 1993, 11(3):357-368.
[15]
Sakaguchi DS, Janick LM, Reh TA. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia[J]. Dev Dyn, 1997, 209(4):387-398.
[16]
Du X, Stull N, Iacovitti L. Novel expression of the tyrosine hydroxylase gene requires both acidic fibroblast growth factor and an activator[J]. J Neurosci, 1994, 14(12):7688-7694.
[17]
Pan T, Xie W, Jankovic J, et al. Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection[J]. Neuroscience Letters, 2005, 377(2):106-109.
[18]
黄立,宋振涛,朱明军. 联合试验设计法优化辣蓼饲料添加剂生产工艺[J]. 江苏农业科学, 2016, 44(11):272-276.
[19]
Song ZT, Zhu MJ. Feed additive production by fermentation of herb Polygonum hydropiper L. and cassava pulp with simultaneous flavonoid dissolution[J]. Biotechnol Appl Biochem, 2017, 64(2):290-300.
[20]
Liu C, Wu M, Hwang S. Optimization of serum free medium for cord blood mesenchymal stem cells[J]. Biochemical Engineering Journal, 2007, 33(1):1-9.
[21]
Chang KH, Zandstra PW. Quantitative screening of embryonic stem cell differentiation:Endoderm formation as a model[J]. Biotechnol Bioeng, 2004 , 88(3):287-298.
[1] 王淦楠, 张忠满, 许晓泉, 孙娜娜, 陈旭锋, 张劲松. 成人体外心肺复苏患者神经功能预后相关指标的预测价值研究[J]. 中华危重症医学杂志(电子版), 2022, 15(01): 9-13.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[4] 赵文思, 曾艳峰. 血清神经元特异性烯醇化酶联合CT检查对肺尘病诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 67-69.
[5] 左剑辉, 陈宇, 尹纯同. Cho/Cr比值联合NSE对肺癌脑转移/骨转移的预后意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 39-42.
[6] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[7] 崔大勇, 王新, 张博. 小胶质细胞在颅脑损伤中免疫调控及对神经元的作用机制[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 56-58.
[8] 徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.
[9] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[10] 尹营营, 袁勇贵. 抑郁症精神运动迟滞的评估方法及生物学机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(08): 712-718.
[11] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[12] 孙兵, 丁鸭锁, 尹春, 刘泽昊, 常浩. 血清Netrin-1和NSE对急性缺血性脑卒中早期神经功能恶化及预后的预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(03): 258-263.
[13] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[14] 李玉莲, 莫伟, 刘欢欢, 李丁, 张永琎. 运动神经元病患者行DSA引导下经皮胃造瘘术的护理[J]. 中华介入放射学电子杂志, 2022, 10(01): 93-96.
[15] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
阅读次数
全文


摘要